Inefficiencies in energy trading systems of microgrids are mainly caused by uncertainty in non-stationary operating environments. The problem of uncertainty can be mitigated by analyzing patterns of primary operation parameters and their corresponding actions. In this paper, a novel energy trading system based on a double deep Q-networks (DDQN) algorithm and a double Kelly strategy is proposed for improving profits while reducing dependence on the main grid in the microgrid systems. The DDQN algorithm is proposed in order to select optimized action for improving energy transactions. Additionally, the double Kelly strategy is employed to control the microgrid’s energy trading quantity for producing long-term profits. From the simulation results, it is confirmed that the proposed strategies can achieve a significant improvement in the total profits and independence from the main grid via optimized energy transactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.