Because of the small sizes of most viruses (typically 5-150 nm), standard optical microscopes, which have an optical diffraction limit of 200 nm, are not generally suitable for their direct observation. Electron microscopes usually require specimens to be placed under vacuum conditions, thus making them unsuitable for imaging live biological specimens in liquid environments. Indirect optical imaging of viruses has been made possible by the use of fluorescence optical microscopy that relies on the stimulated emission of light from the fluorescing specimens when they are excited with light of a specific wavelength, a process known as labeling or self-fluorescent emissions from certain organic materials. In this paper, we describe direct white-light optical imaging of 75-nm adenoviruses by submerged microsphere optical nanoscopy (SMON) without the use of fluorescent labeling or staining. The mechanism involved in the imaging is presented. Theoretical calculations of the imaging planes and the magnification factors have been verified by experimental results, with good agreement between theory and experiment.
We report a direct optical super-resolution imaging approach with 25 nm (∼ λ/17) lateral resolution under 408 nm wavelength illumination by combining fused silica and polystyrene microspheres with a conventional scanning laser confocal microscope (SLCM). The microsphere deposited on the target surface generates a nanoscale central lobe illuminating a sub-diffraction-limited cross-section located on the target surface. The SLCM confocal pinhole isolates the reflected light from the near-field subdiffractive cross-section and suppresses the noises from the side lobe and the far-field paraxial focal point. The structural detail of the subdiffractive cross-section is therefore captured, and the 2D target surface near the bottom of microspheres can be imaged by intensity-based point scanning.
Many bacteria can form wall-deficient variants, or L-forms, that divide by a simple mechanism that does not require the FtsZ-based cell division machinery. Here, we use microfluidic systems to probe the growth, chromosome cycle and division mechanism of Bacillus subtilis L-forms. We find that forcing cells into a narrow linear configuration greatly improves the efficiency of cell growth and chromosome segregation. This reinforces the view that L-form division is driven by an excess accumulation of surface area over volume. Cell geometry also plays a dominant role in controlling the relative positions and movement of segregating chromosomes. Furthermore, the presence of the nucleoid appears to influence division both via a cell volume effect and by nucleoid occlusion, even in the absence of FtsZ. Our results emphasise the importance of geometric effects for a range of crucial cell functions, and are of relevance for efforts to develop artificial or minimal cell systems.
The microsphere optical nanoscopy (MONS) technique recently demonstrated the capability to break the optical diffraction limit with a microsphere size of 2-9 µm fused silica. We report that larger polystyrene microspheres of 30, 50 and 100 µm diameters can overcome the diffraction limit in optical imaging. The sub-diffraction features of a Blu-ray Disc and gold nano-patterned quartz were experimentally observed in air by coupling the microspheres with a standard optical microscope in the reflected light illumination mode. About six to eight times magnification was achieved using the MONS. The mechanism of the MONS was theoretically explained by considering the transformation of near-field evanescent waves into far-field propagating waves. The super-resolution imaging was demonstrated by experiments and theoretical simulations.
The resolution of an optical microscope is restricted by the diffraction limit, which is approximately 200 nm for a white light source. We report that sub-diffraction-limited objects can be resolved in immersion liquids using a microsphere optical nanoscopy (MONS) technique. Image magnifications and resolutions were obtained experimentally and compared in different immersion liquids. We show that a 100 μm diameter barium titanate (BaTiO 3 ) glass microsphere combined with a standard optical microscope can image sub-diffraction-limited objects with halogen light in three different media: water, 40% sugar solution, and microscope immersion oil. In this paper, the super-resolution imaging performance has been described with the three immersion liquid types and the mechanisms are discussed with Mie theory calculation in the field of a Poynting vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.