Extracellular vesicles (EVs) are nano‐sized vesicles composed of proteolipid bilayers carrying various molecular signatures of the cells. As mediators of intercellular communications, EVs have gained great attention as new therapeutic agents in the field of nanomedicine. Therefore, many studies have explored the roles of cell‐derived EVs isolated from cultured hepatocytes or stem cells as inducer of liver proliferation and regeneration under various pathological circumstances. However, study investigating the role of EVs directly isolated from liver tissue has not been performed. Herein, to understand the pathophysiological role and to investigate the therapeutic potential of in vivo liver EVs, we isolated EVs from both normal and carbon tetrachloride (CCl 4 )‐induced damaged in vivo liver tissues. The in vivo EVs purified from liver tissues display typical features of EVs including spherical morphology, nano‐size, and enrichment of tetraspanins. Interestingly, administration of both normal and damaged liver EVs significantly accelerated the recovery of liver tissue from CCl 4 ‐induced hepatic necrosis. This restorative action was through the induction of hepatocyte growth factor at the site of the injury. These results suggest that not only normal liver EVs but also damaged liver EVs play important pathophysiological roles of maintaining homeostasis after tissue damage. Our study, therefore, provides new insight into potentially developing in vivo EV‐based therapeutics for preventing and treating liver diseases.
Indoor pollutants are important problems to public health. Among indoor pollutants, indoor dust contains extracellular vesicles (EVs), which are associated with pulmonary inflammation. However, it has not been reported whether indoor dust EVs affect the cancer lung metastasis. In this study, we isolated indoor dust EVs and investigated their roles in cancer lung metastasis. Upon intranasal administration, indoor dust EVs enhanced mouse melanoma lung metastasis in a dose-dependent manner in mice. Pre-treatment or co-treatment of indoor dust EVs significantly promoted melanoma lung metastasis, whereas post-treatment of the EVs did not. In addition, the lung lysates from indoor dust EV-treated mice significantly increased tumour cell migration in vitro. We observed that tumour necrosis factor-α played important roles in indoor dust EVmediated promotion of tumour cell migration in vitro and cancer lung metastasis in vivo. Furthermore, Pseudomonas EVs, the main components of indoor dust EVs, and indoor dust EVs showed comparable effects in promoting tumour cell migration in vitro and cancer lung metastasis in vivo. Taken together, our results suggest that indoor dust EVs, at least partly contributed by Pseudomonas EVs, are potential promoting agents of cancer lung metastasis.
Psoriasis is one of the most common immune-mediated chronic inflammatory skin diseases. However, little is known about the molecular mechanism underlying the immunological circuits that maintain innate and adaptive immune responses in established psoriasis. In this study, we found that the Pellino1 (Peli1) ubiquitin E3 ligase is activated by innate pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), and is highly upregulated in human psoriatic skin lesions and murine psoriasis-like models. Increased Peli1 expression is strongly correlated with the immunopathogenesis of psoriasis by activating hyperproliferation of keratinocytes in the S and G2/M phases of the cell cycle and promoting chronic skin inflammation. Furthermore, Peli1-induced psoriasis-like lesions showed significant changes in the expression levels of several T helper 17 (Th17)-related cytokines, such as IL-17a, IL-21, IL-22, IL-23, and IL-24, indicating that overexpression of Peli1 resulted in the sequential engagement of the Th17 cell response. However, the overexpression of Peli1 in T cells was insufficient to trigger psoriasis, while T cells were indispensable for disease manifestation. In summary, our findings demonstrate that Peli1 is a critical cell cycle activator of innate immunity, which subsequently links Th17 cell immune responses to the psoriatic microenvironment.
Fluorescent labeling allows for imaging and tracking of vesicles down to singleparticle level. Among several options to introduce fluorescence, staining of lipid membranes with lipophilic dyes provides a straightforward approach without interfering with vesicle content. However, incorporating lipophilic molecules into vesicle membranes in an aqueous solution is generally not efficient because of their low water solubility. Here, we describe a simple, fast (<30 min), and highly effective procedure for fluorescent labeling of vesicles including natural extracellular vesicles. By adjusting the ionic strength of the staining buffer with NaCl, the aggregation status of DiI, a representative lipophilic tracer, can be controlled reversibly. Using cell-derived vesicles as a model system, we show that dispersion of DiI under low-salt condition improved its incorporation into vesicles by a factor of 290. In addition, increasing NaCl concentration after labeling induced free dye molecules to form aggregates, which can be filtered and thus effectively removed without ultracentrifugation. We consistently observed 6-to 85-fold increases in the labeled vesicle count across different types of dyes and vesicles. The method is expected to reduce the concern about off-target labeling resulting from the use of high concentrations of dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.