We report the implementation of universal two-and three-qubit entangling gates on neutral atom qubits encoded in long-lived hyperfine ground states. The gates are mediated by excitation to strongly interacting Rydberg states, and are implemented in parallel on several clusters of atoms in a one-dimensional array of optical tweezers. Specifically, we realize the controlled-phase gate, enacted by a novel, fast protocol involving only global coupling of two qubits to Rydberg states. We benchmark this operation by preparing Bell states with fidelity F ≥ 95.0(2)%, and extract gate fidelity ≥ 97.4(3)%, averaged across five atom pairs. In addition, we report a proof-of-principle implementation of the three-qubit Toffoli gate, in which two control atoms simultaneously constrain the behavior of one target atom. These experiments demonstrate key ingredients for high-fidelity quantum information processing in a scalable neutral atom platform.
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging, since such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the deterministic generation of "Schrödinger cat" states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology. arXiv:1905.05721v2 [quant-ph]
Synthesizing topological order
Topologically ordered matter exhibits long-range quantum entanglement. However, measuring this entanglement in real materials is extremely tricky. Now, two groups take a different approach and turn to synthetic systems to engineer the topological order of the so-called toric code type (see the Perspective by Bartlett). Satzinger
et al
. used a quantum processor to study the ground state and excitations of the toric code. Semeghini
et al
. detected signatures of a toric code–type quantum spin liquid in a two-dimensional array of Rydberg atoms held in optical tweezers. —JS
The control of non-equilibrium quantum dynamics in many-body systems is challenging as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.