In this study, spatial and temporal profiles of an Nd-YAG laser beam pressure pulse are experimentally characterized and fully captured for use in numerical simulations of laser impact welding (LIW). Both axisymmetric, Arbitrary Lagrangian-Eulerian (ALE) and Eulerian dynamic explicit numerical simulations of the collision and deformation of the flyer and target foils are created. The effect of the standoff distance between the foils on impact angle, velocity distribution, springback, the overall shape of the deformed foils, and the weld strength in lap shear tests are investigated. In addition, the jetting phenomenon (separation and ejection of particles at very high velocities due to high-impact collision) and interlocking of the foils along the weld interface are simulated. Simulation results are compared to experiments, which exhibit very similar deformation and impact behaviors. In contrast to previous numerical studies that assume a pre-defined deformed flyer foil shape with uniform initial velocity, the research in this work shows that incorporation of the actual spatial and temporal profiles of the laser beam and modeling of the corresponding pressure pulse based on a laser shock peening approach provides a more realistic prediction of the LIW process mechanism.
Laser shock peening (LSP) is an advanced surface treatment technique that can extend fatigue life in metallic components by inducing near-surface compressive residual stresses. In this study, LSP was implemented to induce compressive residual stresses and modify material properties of selective laser melted (SLM) aluminum A357 specimens. An initial hypothesis on the effect of LSP during tension testing was formulated and tested using finite element simulation. The hypothesis was that, due to the LSP-induced tensile residual stress field in the middle of the specimen cross sections, yielding was expected to initiate in this region. True stress-strain curves of two as-built (AB) and two laser shock peened samples were obtained through transverse tensile tests. The single explicit analysis using time dependent damping (SEATD) technique was used to simulate LSP process utilizing Johnson-Cook (J-C) constitutive parameters. J-C parameters for the cast A357 alloy were used for preliminary study. This was followed by the simulation of the transverse tensile test. J-C parameters for SLM A357 alloy were then empirically estimated, and simulations were repeated accordingly. It was found that the specific LSP pattern induced tensile residual stresses along the edges as well as the middle of the test specimen’s cross-section. Axial residual stress and yield strength profiles along three different paths on specimen’s cross-section were compared and yield regions were investigated. This supported the initial hypothesis, but also provided for a more detailed understanding of actual tensile test failure in the specific SLM A357 specimens for the given LSP treatment. In addition, the same LSP treatment on SLM A357 alloy resulted in lower magnitude of compressive residual stress than for cast A357 aluminum alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.