Background There have been few studies regarding viral involvement in the pathogenesis of renal cell carcinoma (RCC). The aim of this study was to examine the possible association of Epstein–Barr virus (EBV) infection with clinicopathological features and cellular biomarkers including p53, p16INK4a, Ki-67 and nuclear factor-kappa B (NF-κB) in RCC tumors. Methods In this prospective study, 122 histologically confirmed Formalin-fixed Paraffin-embedded RCC tissue specimens along with 96 specimens of their corresponding peritumoral tissues and 23 samples of blunt renal injuries were subjected to nested polymerase chain reaction (nPCR) in order to amplify EBV DNA sequences. The expression of p53, p16INK4a, Ki-67 and NF-κB was investigated by immunohistochemistry (IHC) assay. Statistical analysis was employed to demonstrate the possible associations. Results Infection with EBV was found to be significantly associated with RCC. Our results indicate that p65 NF-κB signaling pathway is probably involved in EBV-mediated RCC pathogenesis. Moreover, we found p53, Ki-67 and cytoplasmic NF-κB expression to be associated with tumor nuclear grade in RCC patients. The expression of p53 and Ki-67 was associated with primary tumor category as well. In addition, p53 overexpression was significantly more frequent among nonconventional RCC tumors than the conventional histologic type. Conclusions Infection with EBV is likely to play an important role in the development of RCC through the constitutive and permanent activation of NF-κB p65 signaling pathway. However, more experiments and supporting data are required to reach a decisive conclusion.
Background. The emergence of multidrug-resistant (MDR) microorganisms causing infections is increasing worldwide and becoming more serious in developing countries. Among those, Acinetobacter species are becoming prominent. Objectives. The aim of this study was to determine the rate of antimicrobial resistance of the bacteria causing infections, Acinetobacter species in particular, in local public hospitals in Firuzabad, Fars province, Iran. Methods. This cross-sectional study was performed on different clinical specimens collected from patients who were suspected of infections hospitalized from March 2016 to March 2019 in local hospitals of Firuzabad, Fars province, Iran. The bacterial isolates were identified following standard microbiological methods. Clinical and Laboratory Standards Institute guidelines were used to identify the antibiotic susceptibility of these isolates. Results. Overall, 1778 bacterial etiologies were isolated from 1533 patients diagnosed with infection. Of these, 1401 (78.8%) were Gram-negative and the remaining were Gram-positive bacteria. Escherichia coli (37.1%), Klebsiella spp. (13.9%), and Acinetobacter species (10.4%) were the most common isolated bacteria. Antibiotic sensitivity testing in this study showed a high resistance rate of Acinetobacter species to all antibiotics tested except Colistin. During the study period, the rate of infection with highly multidrug-resistant Acinetobacter species increased from 7.2% to 13.3%. Conclusions. This study highlights the emergence of MDR bacterial agents such as Acinetobacter species as a new threat in our region. However, a decrease in the rate of infection with Pseudomonas aeruginosa was noticeable.
Background. The nonstructural protein (NS1) of human parvovirus B19 (hPVB19) is considered to be a double-edged sword in its pathogenesis. NS1 protein promotes cell death by apoptosis in erythroid-lineage cells and is also implicated in triggering and the progression of various inflammation and autoimmune disorders. Objectives. We investigated the possible role of hPVB19 NS1 in the modulation of proinflammatory cytokines in nonpermissive HEK-293T cells. Methods. A plasmid containing the fully sequenced NS1 gene (pCMV6-AC-GFP-NS1) was transfected into HEK-293T cells. Transfection efficiency was assessed by fluorescent microscopy over time. Mock (pCMV6-AC-GFP) transfected cells were used as controls. The percentage of apoptotic cells was measured by flow cytometry at 24, 48, and 72 h posttransfection. Interleukin 6 (IL-6) mRNA, as a pleiotropic cytokine, was measured by real-time PCR. Furthermore, cellular supernatants were collected to determine the type and quantity of cytokines produced by mock- and NS1-transfected cells using flow cytometry. Results. Fold change in the expression level of IL-6 mRNA in transfected cells after 72 hr of incubation was found to be 3.01 when compared with mock-transfected cells; however, cell apoptosis did not happen over time. Also, the concentration of cytokines such as IL-2, IL-6, IL-9, IL-17A, IL-21, IL-22, interferon (IFN)-γ, and tumor necrosis factor α (TNF-α) increased in NS1-transfected cells. Conclusions. Overall, our results indicated that proinflammatory cytokine levels had increased following the expression of hPVB19 NS1 in HEK-293T cells, consistent with a role for NS1 expression facilitating the upregulation of inflammatory reactions. Therefore, hPVB19 NS1 function may play a role in the progression of some chronic and inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.