Natural hybridization can lead to various evolutionary outcomes in plants, including hybrid speciation and interspecific gene transfer. It can also cause taxonomic problems, especially in plant genera containing multiple species. In this study, the hybrid status of Melastoma affine, the most widespread taxon in this genus, and introgression between its putative parental species, M. candidum and M. sanguineum, were assessed on two sites, Hainan and Guangdong, using 13 SSR markers and sequences of a chloroplast intergenic spacer. Bayesian-based STRUCTURE analysis detected two most likely distinct clusters for the three taxa, and 76.0% and 73.9% of the morphologically identified individuals of M. candidum and M. sanguineum were correctly assigned, respectively. 74.5% of the M. affine individuals had a membership coefficient to either parental species between 0.1 and 0.9, suggesting admixture between M. candidum and M. sanguineum. Furthermore, NewHybrids analysis suggested that most individuals of M. affine were F2 hybrids or backcross hybrids to M. candidum, and that there was extensive introgression between M. candidum and M. sanguineum. These SSR data thus provides convincing evidence for hybrid origin of M. affine and extensive introgression between M. candidum and M. sanguineum. Chloroplast DNA results were consistent with this conclusion. Much higher hybrid frequency on the more disturbed Guangdong site suggests that human disturbance might offer suitable habitats for the survival of hybrids, a hypothesis that is in need of further testing.
Inferring the origins of hybrid taxa based on morphology alone is difficult because morphologically similar hybrids can arise from hybridization between different populations of the same parental species or be produced by hybridization of different parental species. In this study, we investigated the origins of two semi-creeping taxa in Melastoma, which are morphologically similar to a natural hybrid, M. intermedium, by sequencing a chloroplast intergenic spacer, nuclear ribosomal internal transcribed spacer and two low-copy nuclear genes (tpi and cam) in these taxa and their putative parental species. Our sequence analysis provides compelling evidence for the hybrid status of the two semi-creeping taxa: one originating from hybridization between M. dodecandrum and M. malabathricum, and the other between M. dodecandrum and M. normale. The origins of these hybrids are therefore clearly different from M. intermedium, and morphological similarity for the three hybrids is most likely due to their origins from hybridization between the same creeping species M. dodecandrum and a different erect species in each of the three cases. We also observed low rate of introgression from M. normale to M. dodecandrum, and genetic exchange between them may transfer adaptive traits to M. dodecandrum. Rare occurrence of these two hybrids may be due to small range overlaps between parental species in one case, and different flowering periods between parental species in the other.
Feng Shui woodlands are naturally or artificially formed green areas in southern China. They are precious for maintaining ecosystem balance in modern semiurban environments. However, they are generally small and geographically isolated from each other, and the status of genetic diversity of the plant species within them has been almost neglected. Therefore, we studied the genetic diversity of the endangered Erythrophleum fordii in eight Feng Shui woodlands (a total of 1,061 individuals) in Guangzhou, a large city in southern China, using microsatellites. For comparison, one population with 33 individuals sampled in a nature reserve was also studied.Although our results indicate that significant demographic declines occurred historically in E. fordii, such declines have not resulted in consistent reductions in genetic variation over generations in Feng Shui populations in the recent past, and the levels of genetic variation in these populations were higher than or comparable to the genetic variation of the population in the nature reserve. In addition, our parentage and paternity analyses indicated widespread and potential long-distance pollen flow within one Feng Shui woodland, indicating the presence of an unbroken pollination network, which would at least partially alleviate the genetic erosion due to habitat fragmentation and the unequal gene contributions of E. fordii parents to their progenies when favorable recruitment habitats are absent under most of the parent trees.Overall, our results suggest that E. fordii in Feng Shui woodlands may not be driven to extinction in the near future. Nevertheless, uncontrolled fast urban development with a lack of awareness of Feng Shui woodlands will cause the local extinction of E. fordii, which has already happened in some Feng Shui woodlands. K E Y W O R D Sbottleneck, demographic history, genetic diversity, microsatellites, parentage analysis | 10951 WANG et Al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.