Lignin is an important renewable resource that could substitute fossil feedstocks. An electrochemical depolymerisation of lignin generating aromatic compounds is possible by using a deep eutectic solvent.
Today's electrochemical reactor design is a less developed discipline as compared to electrocatalytic synthesis. Although catalysts show increasing conversion rates, they are often operated without measures for the reduction of concentration polarization effects. As a result, a stagnant boundary layer forms at the electrode‐electrolyte interface. This stagnant boundary layer presents an additional voltage drop and reduces the energy efficiency. It is generally accepted that this phenomenon is caused by a combination of fast electrode reactions and slow diffusion of the reacting species. Our earlier work demonstrated the potential of non‐conducting static mixers to reduce concentration polarization effects. However, there are few studies on conductive static mixers applied as electrodes. In this study, we present a new concept of additive manufactured flow through electrode mixers. Our electrode geometry combines a high surface area with mixing properties, diminishing concentration polarization effects of transport‐limited reactions. Mass transport properties of these conductive static mixers are evaluated in an additive manufactured electrochemical reactor under controlled conditions by applying the limiting‐current method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.