The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy.
Table. Pathological Features and Molecular Profile of Early-Onset Colorectal Cancer Pathological features Molecular profile Poor differentiation Microsatellite stability Mucinous tumors More likely to exhibit LINE-1 hypomethylation and TP53 sequence variations Signet-ring morphology Less frequently harbor KRAS, BRAF V600E, and APC sequence variations Perineural/venous invasion Promoter methylation of CpG islands Abbreviations: APC, adenomatous polyposis coli; BRAF, B-Raf; KRAS, K-Ras; LINE-1, long interspersed nuclear elements; TP53, tumor protein 53.
Targeting mTORC1 has been thoroughly explored in cancer therapy. Following encouraging preclinical studies, mTORC1 inhibitors however failed to provide substantial benefits in cancer patients. Several resistance mechanisms have been identified including mutations of mTOR and activation of alternate proliferation pathways. Moreover, emerging evidence discloses intratumoral heterogeneity of mTORC1 activity that further contributes to a reduced anticancer efficacy of mTORC1 inhibitors. Genetic heterogeneity as well as heterogeneous conditions of the tumor environment such as hypoxia profoundly modifies mTORC1 activity in tumors and hence influences the response of tumors to mTORC1 inhibitors. Intriguingly, the heterogeneity of mTORC1 activity also occurs towards its substrates at the single cell level, as mutually exclusive pattern of activation of mTORC1 downstream effectors has been reported in tumors. After briefly describing mTORC1 biology and the use of mTORC1 inhibitors in patients, this review will give an overview on concepts of resistance to mTORC1 inhibition in cancer with a particular focus on intratumoral heterogeneity of mTORC1 activity.
BackgroundBlocking the mechanistic target of rapamycin complex-1 (mTORC1) with chemical inhibitors such as rapamycin has shown limited clinical efficacy in cancer. The tumor microenvironment is characterized by an acidic pH which interferes with cancer therapies. The consequences of acidity on the anti-cancer efficacy of mTORC1 inhibitors have not been characterized and are thus the focus of our study.MethodsCancer cell lines were treated with rapamycin in acidic or physiological conditions and cell proliferation was investigated. The effect of acidity on mTORC1 activity was determined by Western blot. The anticancer efficacy of rapamycin in combination with sodium bicarbonate to increase the intratumoral pH was tested in two different mouse models and compared to rapamycin treatment alone. Histological analysis was performed on tumor samples to evaluate proliferation, apoptosis and necrosis.ResultsExposing cancer cells to acidic pH in vitro significantly reduced the anti-proliferative effect of rapamycin. At the molecular level, acidity significantly decreased mTORC1 activity, suggesting that cancer cell proliferation is independent of mTORC1 in acidic conditions. In contrast, the activation of mitogen-activated protein kinase (MAPK) or AKT were not affected by acidity, and blocking MAPK or AKT with a chemical inhibitor maintained an anti-proliferative effect at low pH. In tumor mouse models, the use of sodium bicarbonate increased mTORC1 activity in cancer cells and potentiated the anti-cancer efficacy of rapamycin. Combining sodium bicarbonate with rapamycin resulted in increased tumor necrosis, increased cancer cell apoptosis and decreased cancer cell proliferation as compared to single treatment.ConclusionsTaken together, these results emphasize the inefficacy of mTORC1 inhibitors in acidic conditions. They further highlight the potential of combining sodium bicarbonate with mTORC1 inhibitors to improve their anti-tumoral efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.