Brush seals are comprised of fine diameter fibers densely packed between retaining and backing plates. To achieve seal compliance bristles are arranged to contact rotor with some lay angle. When axial pressure load is applied, bristles interlock and get stuck at the backing plate, and seal stiffness varies under operating conditions. Operating stiffness is critical to determine seal-rotor contact pressure and wear life. Typically, seal stiffness is measured by pressing a curved shoe to brush bore as reported in open literature. Due to the complex nature of pressure-stiffness bristle behavior, static and unpressurized measurements cannot represent actual working seal stiffness. This work presents a brush seal stiffness measurement system that is capable of measuring seal stiffness under working pressure and speed conditions. Rotor speed is achieved by an integrated spindle drive, while contact forces are measured via sensitive load cells. Rotor excursions are applied through lateral motions of the seal housing that is actuated by a motorized linear slide. Stiffness testing methodology and calibration procedure are discussed. Comparative experimental data are presented for both static pressurized and dynamic-pressurized stiffness tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.