SUMMARYChanges in world-wide population trends have provided new demands for new technologies in areas such as care and rehabilitation. Recent developments in the the field of robotics for neurorehabilitation have shown a range of evidence regarding usefulness of these technologies as a tool to augment traditional physiotherapy. Part of the appeal for these technologies is the possibility to place a rehabilitative tool in one's home, providing a chance for more frequent and accessible technologies for empowering individuals to be in charge of their therapy.Objective: this manuscript introduces the Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) project. The main goal is to demonstrate design and development steps involved in a complex intervention, while examining feasibility of using an instrumented orthotic device for home-based rehabilitation after stroke.Methods: the project uses a user-centred design methodology to develop a hand/wrist rehabilitation device for home-based therapy after stroke. The patient benefits from a dedicated user interface that allows them to receive feedback on exercise as well as communicating with the health-care professional. The health-care professional is able to use a dedicated interface to send/receive communications and remote-manage patient's exercise routine using provided performance benchmarks. Patients were involved in a feasibility study (n=23) and were instructed to use the device and its interactive games for 180 min per week, around 30 min per day, for a period of 6 weeks, with a 2-months follow up. At the time of this study, only 12 of these patients have finished their 6 weeks trial plus 2 months follow up evaluation.Results: with the "use feasibility" as objective, our results indicate 2 patients dropping out due to technical difficulty or lack of personal interests to continue. Our frequency of use results indicate that on average, patients used the SCRIPT1 device around 14 min of self-administered therapy a day. The group average for the system usability scale was around 69% supporting system usability.Conclusions: based on the preliminary results, it is evident that stroke patients were able to use the system in their homes. An average of 14 min a day engagement mediated via three interactive games is promising, given the chronic stage of stroke. During the 2nd year of the project, 6 additional games with more functional relevance in their interaction have been designed to allow for a more variant 1332Supervised care and rehabilitation involving personal tele-robotics context for interaction with the system, thus hoping to positively influence the exercise duration. The system usability was tested and provided supporting evidence for this parameter. Additional improvements to the system are planned based on formative feedback throughout the project and during the evaluations. These include a new orthosis that allows a more active control of the amount of assistance and resistance provided, thus aiming to provide a more challenging ...
Recovery of functional hand movements after stroke is directly linked to rehabilitation duration and intensity. Continued therapy at home has the potential to increase both. For many patients this requires a device that helps them overcome the hyperflexion of wrist and fingers that is limiting their ability to open and use their hand. We developed an interactive hand and wrist orthosis for post-stroke rehabilitation that provides compliant and adaptable extension assistance at the wrist and fingers, interfaces with motivational games based on activities of daily living, is integrated with an off-the-shelf mobile arm support and includes novel wrist and finger actuation mechanisms. During the iterative development, multiple prototypes have been evaluated by therapists in clinical settings and used intensively and independently by 33 patients at home. This paper details the final design of the SCRIPT passive orthosis resulting from these efforts.
In this paper, a new hand and wrist exoskeleton design, the SCRIPT Passive Orthosis (SPO), for the rehabilitation after stroke is presented. The SPO is a wrist, hand, and finger orthosis that assists individuals after stroke that suffer from impairments caused by spasticity and abnormal synergies. These impairments are characterized in the wrist and hand by excessive involuntary flexion torques that make the hand unable to be used for many activities in daily life. The SPO can passively offset these undesired torques, but it cannot actively generate or control movements. The user needs to use voluntary muscle activation to perform movements and thus needs to have some residual muscle control to successfully use the SPO. The SPO offsets the excessive internal flexion by applying external extension torques to the joints of the wrist and fingers. The SPO physically interacts with the users using the forearm shell, the hand plate and the digit caps from the Saebo Flex, but is otherwise a completely novel design. It applies the external extension torques via passive leaf springs and elastic tension cords. The amount of this support can be adjusted to provide more or less offset force to wrist, finger, or thumb extension, manually. The SPO is equipped with sensors that can give a rough estimate of the joint rotations and applied torques, sufficient to make the orthosis interact with our interactive gaming environment. Integrated inertial and gyroscopic sensors provide limited information on the user's forearm posture. The first home-based patient experiences have already let to several issues being resolved, but have also made it clear that many improvement are still to be made.
an automatic parking system relies on precise estimation of parking space geometry. This paper proposes the use of a hierarchical threedimensional occupancy grid for the detection of parking spaces. The occupancy grid covers the environment representation of the static world. A hierarchical design allows dynamic selection of the level of detail. Applying a three-dimensional grid provides the additional benefit of supporting a variety of other functions including height estimation using a single environment representation type [7].The presented approach derives the distance to obstacles and walls and thus is able to represent the free space that forms parking spaces. In a second step, the dimensions of the parking space are calculated. For evaluation, real parking spaces are detected and estimated using short range radar sensors. The calculated dimensions are compared to the ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.