Acoustic diffraction allows sound to travel around opaque objects and therefore may allow beyond-line-of-sight sensing of remote sound sources. This paper reports simulated and experimental results for localizing sound sources based on fully shadowed microphone array measurements. The generic geometry includes a point source, a solid 90° wedge, and a receiving array that lies entirely in the shadow defined by the source location and the wedge. Source localization performance is assessed via matched-field (MF) ambiguity surfaces as a function of receiving array configuration, and received signal-to-noise ratio for the Bartlett and minimum variance distortionless (MVD) MF processors. Here, the sound propagation model is developed from a Green's function integral treatment. A simple 16 element line array of microphones is tested in three mutually orthogonal orientations. The experiments were conducted using an approximate 50-to-1-scaled tabletop model of a blind city-street intersection and produced ambiguity surfaces from source frequencies between 17.5 and 19 kHz that were incoherently summed. The experimental results suggest that a sound source may be localized by the MVD processor when using fully shadowed arrays that have significant aperture parallel to the edge of the wedge. However, this performance is reduced significantly for signal-to-noise ratios below 40 dB.
The photoacoustic effect is commonly exploited for molecular spectroscopy, nondestructive evaluation, and trace gas detection. Photoacoustic sound is produced when a photoactive material absorbs electromagnetic radiation and converts it to acoustic waves. This article focuses on the generation of photoacoustic sound from thermal expansion of photoactive gases due to unsteady heating from a laser light source, and extends the work of prior studies on photoacoustic sound generation in an open environment. Starting with the forced free-space wave equation, a simple model is constructed for photoacoustic sounds produced by both acoustically distributed and compact gas clouds. The model accounts for laser absorption through the Lambert-Beer law and includes the effects of photoactive gas cloud characteristics (shape, size, and concentration distribution), but does not include molecular diffusion, thermal conduction, convection, or the effects of acoustic propagation through sound-absorbing inhomogeneous media. This model is compared to experimentally measured photoacoustic sounds generated by scanning a 10.6-micron carbon dioxide (CO2) laser beam through small clouds of a photoactive gas, sulfur hexafluoride (SF6). For the current investigation, the photoactive gas clouds are formed either by low flow-rate calibrated leak sources or by a laminar jet emerging from a 1.6-mm-diam tube. Model-measurement comparisons are presented over a 3- to 160-kHz bandwidth. Signal pulse shapes from simple gas cloud geometries are found to match calculated results when unmeasured gas cloud characteristics within the model are adjusted.
Leak detection and localization are critical manufacturing quality-control processes. Many industrial and domestic machines use or convey pressurized gases or liquids. Unintended leaks from machine components may be detrimental to consumers, manufacturers, and the environment. This paper describes a leak detection technique based on photoacoustic sounds produced by the interaction of a carbon dioxide (CO2) laser tuned to 10.6 micrometers and a photoactive tracer gas, sulfur hexaflouride (SF6), emitted by calibrated leak sources. Acoustic signals generated by a high-speed scan of the laser beam through the cloud of tracer gas formed near the leak are recorded in a bandwidth from 3 to 52 kHz by multiple microphones. From the recorded signals, the presence or absence of a leak may be deduced by comparison with the background noise level at the signal frequencies, which occur at the harmonics of the scan rate. When a leak is present, its location is determined from a simple model of the acoustic environment and matched field processing (MFP). Current results show that a gas leak of 1 cm3 per day can be detected and localized to within +/- 3 mm in a few seconds using four microphones, placed 0.41 m from the leak location, and an incoherent average of the MFP ambiguity surfaces at eight signal frequencies. Comparisons of the Bartlett and minimum-variance-distortionless matched field processors are also presented.
No abstract
Unintended gas or liquid leaks from manufactured components or manufacturing systems may be detrimental to consumers, manufacturers, and the environment. Thus, leak testing is important for quality, safety, and environmental reasons. This paper describes parametric dependencies for photoacoustic leak localization. The technique is based on the interaction of 10.6-micrometer radiation from a carbon dioxide (CO2) laser and a photoactive tracer gas, sulfur hexafluoride (SF6). For the current investigations, acoustic signals are generated by scanning a laser beam at high speed through gas plumes formed above calibrated leaks. These signals are remotely measured with a four-microphone linear array and analyzed using Bartlett and minimum-variance-distortionless (MVD) matched-field processing (MFP) techniques to determine leak location. This paper extends prior work in photoacoustic leak testing through (i) use of more signal frequencies; (ii) parametric study of four different laser scan rates; and (iii) examination of mismatch between the actual acoustic environment and the propagation model used in the MFP; and (iv) presentation of leak localization results on a curved surface. For a 12-watt CO2 laser exciting the small SF6 gas plume produced by a one-cm3-per-day leak with microphones placed 0.41 m from the leak location, root-mean-square localization uncertainties as small as +/-0.5 mm on a line scan of 0.46 m can be achieved when the largest possible number of signal frequencies fall in a measurement bandwidth of approximately 70 kHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.