Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A3Bi2I9) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH3NH3+ (methylammonium, MA+) in MA3Bi2I9 with various organic cations such as CH(NH2)2+ (formamidinium, FA+), (CH3)2NH2+ (dimethylammonium, DMA+), C(NH2)3+ (guanidinium, GA+) and inorganic cations such as cesium (Cs+), rubidium (Rb+), potassium (K+), sodium (Na+) and lithium (Li+) and (2) partially replacing MA+ with Cs+ in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance.
Graphic Abstract
Thermal co-evaporation is a promising method for large-scale uniform perovskite deposition. However, the optimization of deposition parameters is an intricate process and often not reproducible between different laboratories. In this...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.