Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relatively prolonged synapse and neuronal maturation in humans might contribute to enhancement of social learning during development and transmission of cultural practices, including language. However, because macaques, which share a last common ancestor with humans ∼25 million years ago, have served as the predominant comparative primate model in neurodevelopmental research, the paucity of data from more closely related great apes leaves unresolved when these evolutionary changes in the timing of cortical development became established in the human lineage. To address this question, we used immunohistochemistry, electron microscopy, and Golgi staining to characterize synaptic density and dendritic morphology of pyramidal neurons in primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortices of developing chimpanzees (Pan troglodytes). We found that synaptogenesis occurs synchronously across cortical areas, with a peak of synapse density during the juvenile period (3-5 y). Moreover, similar to findings in humans, dendrites of prefrontal pyramidal neurons developed later than sensorimotor areas. These results suggest that evolutionary changes to neocortical development promoting greater neuronal plasticity early in postnatal life preceded the divergence of the human and chimpanzee lineages.evolution | Golgi stain | brain | ontogeny
The primate cerebral cortex is characterized by regional variation in the structure of pyramidal neurons, with more complex dendritic arbors and greater spine density observed in prefrontal compared with sensory and motor cortices. Although there are several investigations in humans and other primates, virtually nothing is known about regional variation in the morphology of pyramidal neurons in the cerebral cortex of great apes, humans' closest living relatives. The current study uses the rapid Golgi stain to quantify the dendritic structure of layer III pyramidal neurons in 4 areas of the chimpanzee cerebral cortex: Primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortex. Consistent with previous studies in humans and macaque monkeys, pyramidal neurons in the prefrontal cortex of chimpanzees exhibit greater dendritic complexity than those in other cortical regions, suggesting that prefrontal cortical evolution in primates is characterized by increased potential for integrative connectivity. Compared with chimpanzees, the pyramidal neurons of humans had significantly longer and more branched dendritic arbors in all cortical regions.
Increased connectivity of higher-order association regions in the neocortex has been proposed as a defining feature of human brain evolution. At present, however, there are limited comparative data to examine this claim fully. We tested the hypothesis that the distribution of neuropil across areas of the neocortex of humans differs from that of one of our closest living relatives, the common chimpanzee. The neuropil provides a proxy measure of total connectivity within a local region because it is comprised mostly of dendrites, axons, and synapses. Using image analysis techniques, we quantified the neuropil fraction from both hemispheres in six cytoarchitectonically defined regions including frontopolar cortex (area 10), Broca’s area (area 45), frontoinsular cortex (area FI), primary motor cortex (area 4), primary auditory cortex (area 41/42), and the planum temporale (area 22). Our results demonstrate that humans exhibit a unique distribution of neuropil in the neocortex compared to chimpanzees. In particular, the human frontopolar cortex and the frontoinsular cortex had a significantly higher neuropil fraction than the other areas. In chimpanzees these prefrontal regions did not display significantly more neuropil, but the primary auditory cortex had a lower neuropil fraction than other areas. Our results support the conclusion that enhanced connectivity in the prefrontal cortex accompanied the evolution of the human brain. These species differences in neuropil distribution may offer insight into the neural basis of human cognition, reflecting enhancement of the integrative capacity of the prefrontal cortex.
Freeze/thawing procedures are associated with ultrastructural alterations in specific oocyte microdomains, presumably linked to the reduced developmental potential of mature cryopreserved oocytes. Further work is needed to determine whether or not a high concentration of sucrose plays a role, at least in part, in producing the above alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.