Transgenic (Tg) mice expressing the complete coding sequences of HIV-1 in CD4+ T cells and in cells of the macrophage/dendritic lineages develop severe AIDS-like pathologies: failure to thrive/weight loss, diarrhea, wasting, premature death, thymus atrophy, loss of CD4+ T cells, interstitial pneumonitis, and tubulo-interstitial nephritis. The generation of Tg mice expressing selected HIV-1 gene(s) revealed that nef harbors a major disease determinant. The latency and progression (fast/slow) of the disease were strongly correlated with the levels of Tg expression. Nef-expressing Tg thymocytes were activated and alpha-CD3 hyperresponsive with respect to tyrosine phosphorylation of several substrates, including LAT and MAPK. The similarity of this mouse model to human AIDS, particularly pediatric AIDS, suggests that Nef may play a critical role in human AIDS, independently of its role in virus replication.
SummaryIn mice, natural resistance or susceptibility to infection with intracellular parasites is determined by a locus or group of loci on chromosome 1, designated Bcg, Lsh, and Ity, which controls early microbial replication in reticuloendothelial organs. We have identified by positional cloning a candidate gene for Beg, Nrampl, which codes for a novel macrophage-specific membrane transport protein. We have created a mouse mutant bearing a null allele at Nrampl, and we have analyzed the effect of such a mutation on natural resistance to infection. Targeted disruption of Nrampl has pleiotropic effects on natural resistance to infection with intracellular parasites, as it eliminated resistance to Mycobacterium boris, Leishmania donovani, and lethal Salmonella typhimurium infection, establishing that Nrampl, Bcg, Lsh, and It), are the same locus. Comparing the profiles of parasite replication in control and Nrampl -/-mice indicated that the NramplAse 169 allele of Beg s inbred strains is a null allele, pointing to a critical role of this residue in the mechanism of action of the protein. Despite their inability to control parasite growth in the early nonimmune phase of the infection, Nrampl -/-mutants can overcome the infection in the late immune phase, suggesting that Nrampl plays a key role only in the early part of the macrophage-parasite interaction and may function by a cytocidal or cytostatic mechanism distinct from those expressed by activated macrophages.
The T cell protein tyrosine phosphatase (TC-PTP) is one of the most abundant mammalian tyrosine phosphatases in hematopoietic cells; however, its role in hematopoietic cell function remains unknown. In this report, we investigated the physiological function(s) of TC-PTP by generating TC-PTP–deficient mutant mice. The three genotypes (+/+, +/−, −/−) showed mendelian segregation at birth (1:2:1) demonstrating that the absence of TC-PTP was not lethal in utero, but all homozygous mutant mice died by 3–5 wk of age, displaying runting, splenomegaly, and lymphadenopathy. Homozygous mice exhibited specific defects in bone marrow (BM), B cell lymphopoiesis, and erythropoiesis, as well as impaired T and B cell functions. However, myeloid and macrophage development in the BM and T cell development in the thymus were not significantly affected. BM transplantation experiments showed that hematopoietic failure in TC-PTP −/− animals was not due to a stem cell defect, but rather to a stromal cell deficiency. This study demonstrates that TC-PTP plays a significant role in both hematopoiesis and immune function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.