BackgroundGenetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets.ResultsHere we explore the role of recombination in both maintaining and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations.ConclusionsThese findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3286-x) contains supplementary material, which is available to authorized users.
Permafrost stores approximately 50% of global soil carbon (C) in a frozen form; it is thawing rapidly under climate change, and little is known about viral communities in these soils or their roles in C cycling. In permafrost soils, microorganisms contribute significantly to C cycling, and characterizing them has recently been shown to improve prediction of ecosystem function. In other ecosystems, viruses have broad ecosystem and community impacts ranging from host cell mortality and organic matter cycling to horizontal gene transfer and reprogramming of core microbial metabolisms. Here we developed an optimized protocol to extract viruses from three types of high organic-matter peatland soils across a permafrost thaw gradient (palsa, moss-dominated bog, and sedge-dominated fen). Three separate experiments were used to evaluate the impact of chemical buffers, physical dispersion, storage conditions, and concentration and purification methods on viral yields. The most successful protocol, amended potassium citrate buffer with bead-beating or vortexing and BSA, yielded on average as much as 2-fold more virus-like particles (VLPs) g−1 of soil than other methods tested. All method combinations yielded VLPs g−1 of soil on the 108 order of magnitude across all three soil types. The different storage and concentration methods did not yield significantly more VLPs g−1 of soil among the soil types. This research provides much-needed guidelines for resuspending viruses from soils, specifically carbon-rich soils, paving the way for incorporating viruses into soil ecology studies.
BackgroundMicrobes drive the biogeochemistry that fuels the planet. Microbial viruses modulate their hosts directly through mortality and horizontal gene transfer, and indirectly by re-programming host metabolisms during infection. However, our ability to study these virus-host interactions is limited by methods that are low-throughput and heavily reliant upon the subset of organisms that are in culture. One way forward are culture-independent metagenomic approaches, but these novel methods are rarely rigorously tested, especially for studies of environmental viruses, air microbiomes, extreme environment microbiology and other areas with constrained sample amounts. Here we perform replicated experiments to evaluate Roche 454, Illumina HiSeq, and Ion Torrent PGM sequencing and library preparation protocols on virus metagenomes generated from as little as 10pg of DNA.ResultsUsing %G + C content to compare metagenomes, we find that (i) metagenomes are highly replicable, (ii) some treatment effects are minimal, e.g., sequencing technology choice has 6-fold less impact than varying input DNA amount, and (iii) when restricted to a limited DNA concentration (<1μg), changing the amount of amplification produces little variation. These trends were also observed when examining the metagenomes for gene function and assembly performance, although the latter more closely aligned to sequencing effort and read length than preparation steps tested. Among Illumina library preparation options, transposon-based libraries diverged from all others and adaptor ligation was a critical step for optimizing sequencing yields.ConclusionsThese data guide researchers in generating systematic, comparative datasets to understand complex ecosystems, and suggest that neither varied amplification nor sequencing platforms will deter such efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.