Learning through augmented reality (AR) and virtual reality (VR) experiences has become a valuable approach in modern robotics education. This study evaluated this approach and investigated how 99 first-year industrial engineering students explored robot systems through such online experiences while staying at home. The objective was to examine learning in the AR/VR environment and evaluate its contribution to understanding the robot systems and to fostering integrative thinking. During the AR experiences that we developed using Vuforia Studio, the students learned about TurtleBot2 and RACECAR MN robots while disassembling and modifying their models and by obtaining information about their components. In the VR experience with the RacecarSim simulator, the students explored sensor-based robot navigation. Quizzes were used to assess understanding of robot systems, and a post-workshop questionnaire evaluated the workshop’s contribution to learning about the robots and to training integrative thinking skills. The data indicate that the students gained understanding of the robot systems, appreciated the contribution of the augmented and virtual reality apps, and widely used integrative thinking throughout the practice. Our study shows that AR apps and virtual simulators can be effectively used for experiential learning about robot systems in online courses. However, these experiences cannot replace practice with real robots.
<span style="font-family: 'Times New Roman','serif'; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: DE; mso-bidi-language: AR-SA;">This study explores an opportunity to engage first-year engineering students in practice with a modern industrial robot Baxter and provides training in spatial skills. We developed a laboratory exercise in which the students operate the robot to perform spatial manipulations of objects. We implemented the exercise on a digital twin of Baxter in the Gazebo virtual environment. The digital twin was calibrated to mimic the physical properties of the Baxter and correctly simulate its spatial manipulations with oriented cubes. The exercise was delivered to a class of 25 students as part of the robotics workshop in the Introduction to Industrial Engineering course. We administered a post-workshop questionnaire with focus on the analysis of the learning outcomes and students' spatial difficulties. The students noted that the workshop and particularly the exercise effectively exposed them to industrial robotics and raised their spatial awareness in robot operation.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.