Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water.
Dalman, LA, et al. 2019. Enhanced bottom-ice algal biomass across a tidal strait in the Kitikmeot Sea of the Canadian Arctic. Elem Sci Anth, 7: 22. DOI: https://doi.org/10.1525/elementa.361 presents the argument for newly identified hotspots in regions of strong sub-ice currents but persistent ice covers, so called "invisible polynyas".
The shelfbreak current over the Beaufort Sea continental slope is known to be one of the most energetic features of the Beaufort Sea hydrography. In January 2005, three oceanographic moorings deployed over the Canadian (eastern) Beaufort Sea continental slope simultaneously recorded two consecutive shelfbreak current events with along‐slope eastward bottom‐intensified flow up to 120 cm s−1. Both events were generated by the local wind forcing associated with two Pacific‐born cyclones passing north of the Beaufort Sea continental slope toward the Canadian Archipelago. Over the mooring array, the associated westerly wind exceeded 15 m s−1. These two cyclones generated storm surges along the Beaufort Sea coast with sea surface height (SSH) rising up to 1.4 m following the two westerly wind maxima. We suggest that the westerly along‐slope wind generated a surface Ekman onshore transport. The associated SSH increase over the shelf produced a cross‐slope pressure gradient that drove an along‐slope eastward geostrophic current, in the same direction as the wind. This wind‐driven barotropic flow was superimposed on the background baroclinic bottom‐intensified shelfbreak current that consequently amplified. Summer‐fall satellite altimetry data for 1992–2013 show that the SSH gradient in the southeastern Beaufort Sea is enhanced over the upper continental slope in response to frequent storm surge events. Because the local wind forcing and/or sea‐ice drift could not explain the reduction of sea‐ice concentration over the Beaufort Sea continental slope in January 2005, we speculate that wind‐driven sea level fluctuations may impact the sea‐ice cover in winter.
Abstract. The first-ever conductivity–temperature–depth (CTD) observations on the Wandel Sea shelf in North Eastern Greenland were collected in April–May 2015. They were complemented by CTD profiles taken along the continental slope during the Norwegian FRAM 2014–15 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the outlet glaciers. The subsurface water is associated with the Pacific Water outflow from the Arctic Ocean. The underlying Halocline separates the Pacific Water from a deeper layer of Polar Water that has interacted with the warm Atlantic water outflow through Fram Strait recorded below 140 m. Over the outer shelf, the Halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient Polar Water mass across the continental slope. At the glacier front, colder and turbid water intrusions were observed at the base of the Halocline. In temperature–salinity space, these data follow a mixing line that diverges from ambient water properties and indicates ocean–glacier interaction. Our observations of Pacific Water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through western Fram Strait.
Recently, we highlighted the presence of a strong west‐east asymmetry in sea ice thickness across Hudson Bay that is driven by cyclonic circulation. Building on this work, we use satellite altimetry and a unique set of in situ observations of ice thickness from three moored upward looking sonars to examine the role of atmospherically driven ice dynamics in producing contrasting regional ice thickness patterns. Ultimately, north‐northwesterly winds coupled with numerous reversals during winter 2016/2017 led to thicker ice in southern Hudson Bay, while enhanced west‐northwesterly winds during winter 2017/2018 led to thicker ice in eastern Hudson Bay that delayed breakup and onset of the summer shipping season to coastal communities. Extending the analysis over the 40‐year satellite observation period, we find that these two different patterns of atmospheric forcing alter the timing of breakup by 30 days in eastern Hudson Bay and offer some skill in seasonal predictions of breakup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.