Systematic model investigations of the molecular interactions of fluorinated amino acids within native protein environments substantially improve our understanding of the unique properties of these building blocks. A rationally designed heterodimeric coiled coil peptide (VPE/VPK) and nine variants containing amino acids with variable fluorine content in either position a16 or d19 within the hydrophobic core were synthesized and used to evaluate the impact of fluorinated amino acid substitutions within different hydrophobic protein microenvironments. The structural and thermodynamic stability of the dimers were examined by applying both experimental (CD spectroscopy, FRET, and analytical ultracentrifugation) and theoretical (MD simulations and MM-PBSA free energy calculations) methods. The coiled coil environment imposes position-dependent conformations onto the fluorinated side chains and thus affects their packing and relative orientation towards their native interaction partners. We find evidence that such packing effects exert a significant influence on the contribution of fluorine-induced polarity to coiled coil folding.
We have identified a novel gene in a genome-wide, double-strand break DNA repair RNAi screen and show that is involved in the neurological disease hereditary spastic paraplegia.
The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG–protein systems.
We present the results for CAPRI Round 46, the third joint CASP‐CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo‐oligomers and 6 heterocomplexes. Eight of the homo‐oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher‐order assemblies. These were more difficult to model, as their prediction mainly involved “ab‐initio” docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance “gap” was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template‐based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
Glycosaminoglycans represent a class of linear anionic periodic polysaccharides, which play a key role in a variety of biological processes in the extracellular matrix via interactions with their protein targets. Computationally, glycosaminoglycans are very challenging due to their high flexibility, periodicity and electrostatics-driven nature of the interactions with their protein counterparts. In this work, we carry out a detailed computational characterization of the interactions in protein-glycosaminoglycan complexes from the Protein Data Bank (PDB), which are split into two subsets accounting for their intrinsic nature: non-enzymatic-protein-glycosaminoglycan and enzyme-glycosaminoglycan complexes. We apply molecular dynamics to analyze the differences in these two subsets in terms of flexibility, retainment of the native interactions in the simulations, free energy components of binding and contributions of protein residue types to glycosaminoglycan binding. Furthermore, we systematically demonstrate that protein electrostatic potential calculations, previously found to be successful for glycosaminoglycan binding sites prediction for individual systems, are in general very useful for proposing protein surface regions as putative glycosaminoglycan binding sites, which can be further used for local docking calculations with these particular polysaccharides. Finally, the performance of six different docking programs (Autodock 3, Autodock Vina, MOE, eHiTS, FlexX and Glide), some of which proved to perform well for particular protein-glycosaminoglycan complexes in previous work, is evaluated on the complete protein-glycosaminoglycan data set from the PDB. This work contributes to widen our knowledge of protein-glycosaminoglycan molecular recognition and could be useful to steer a choice of the strategies to be applied in theoretical studies of these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.