The present clinical study confirms that PMNLs intensively accumulate in the regions of cerebral infarction. The present study revealed that this accumulation correlated with the severity of the brain tissue damage and poor neurological outcome.
G protein-regulated Ca2+ sensitivity of vascular contractile proteins plays an important role in cerebrovascular reactivity. The present study examines the intracellular mechanisms that govern G protein-regulated Ca2+ sensitivity in cerebral arteries of different size and age. We studied β-escin-permeabilized segments of common carotid, basilar, and middle cerebral arteries from nonpregnant adult and near-term fetal sheep. Activation of protein kinase C (PKC) by (−)-indolactam V or a phorbol ester produced receptor-independent increases in Ca2+ sensitivity. Such increases were more marked in immature arteries and were inversely correlated with artery size in both mature and immature arteries. However, inhibitors of PKC did not significantly affect increases in Ca2+ sensitivity in responses to either serotonin (5-hydroxytryptamine, 5-HT) or guanosine 5′- O-(3-thiotriphosphate) (GTPγS). Alternatively, deactivation of rho p21, a small G protein associated with Rho kinase, by exotoxin C3 fully prevented increases in Ca2+ sensitivity in responses to 5-HT or GTPγS in both adult and fetal arteries of all types. Neither inhibitors of PKC nor exotoxin C3 altered baseline Ca2+ sensitivity. We conclude that patterns of receptor- and/or G protein-mediated modulation of Ca2+ sensitivity are dependent on an intracellular pathway that involves activation of small G proteins and Rho kinase. In contrast, PKC has little, if any, role in agonist-induced Ca2+ sensitization under the present experimental conditions.
Cerebrovascular reactivity to biogenic amines varies in relation to both arterial diameter and age. The present study examines the hypothesis that these patterns of reactivity are secondary to corresponding variations in the Ca2+ sensitivity of the contractile proteins. To test this hypothesis, we permeabilized segments of common carotid (Com), basilar, main branch middle cerebral, and second-branch middle cerebral (MCA-B) arteries from nonpregnant adult and near-term fetal sheep using beta-escin. Permeabilization methods were carefully validated and adjusted for each artery type. Baseline myofilament Ca2+ sensitivity in both adults and fetuses increased significantly from the Com to the MCA-B and was generally higher in fetuses than in adults. Serotonin dose dependently increased Ca2+ sensitivity via a G protein-dependent mechanism in all arteries. The magnitudes of this effect did not vary among artery types but were significantly greater in fetal than in adult arteries. This effect of serotonin was mimicked by guanosine 5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of guanosine 5'-triphosphate, and its effects were also much greater in fetal than in adult arteries. We conclude that patterns of cerebrovascular reactivity to biogenic amines were determined, at least in part, by underlying variations in baseline myofilament Ca2+ sensitivity and/or its alteration by G protein-dependent mechanisms.
The present studies examine how agonist-induced increases in cytosolic Ca2+ concentration and sensitivity vary with maturation. Basilar arteries from term fetal (138-141 d) and nonpregnant adult sheep were denuded of endothelium, mounted for measurements of contractile tension, and then loaded with Fura-2 to enable estimation of cytosolic Ca2+ responses to both potassium and serotonin (5-hydroxytryptamine, 5-HT). In response to potassium, normalized values of intracellular Ca2+ and tension increased in parallel in both fetal and adult preparations; no age-related differences were apparent. In contrast, 5-HT increased Ca2+ sensitivity significantly more in fetal than in adult arteries. In the absence of extracellular Ca2+, 5-HT increased cytosolic Ca2+ in adult but not fetal arteries. In addition, responses to repeated applications of 5-HT in the absence of extracellular Ca2+ were exhausted more rapidly in fetal than in adult arteries. We interpret these data to indicate that vascular maturation involves important shifts in the mechanisms mediating cerebrovascular pharmacomechanical coupling. Specifically, the data suggest that normal development involves a reduction in the Ca2+ sensitizing effects of agonists with parallel increases in the agonist-induced intracellular Ca2+ release. In so doing, these studies offer one possible reason why vascular reactivity varies dramatically with age. From a pathophysiologic perspective, these studies also advance the possibility that failure to shift from the increased Ca2+ sensitivity typical of immature arteries may lead to vascular hyperreactivity in adult arteries.
To explore the hypothesis that cerebrovascular maturation alters ryanodine- and inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) pool sizes, we measured total intracellular Ca(2+) with (45)Ca and the fractions of intracellular Ca(2+) released by IP(3) and/or caffeine in furaptra-loaded permeabilized basilar arteries from nonpregnant adult and term fetal (139-141 days) sheep. Ca(2+) mass (nmol/mg dry weight) was similar in adult (1.60 +/- 0.18) and fetal (1.71 +/- 0.16) arteries in the pool sensitive to IP(3) alone but was significantly lower for adult (0.11 +/- 0.01) than for fetal (1.22 +/- 0.11) arteries in the pool sensitive to ryanodine alone. The pool sensitive to both ryanodine and IP(3) was also smaller in adult (0.14 +/- 0.01) than in fetal (0.85 +/- 0.08) arteries. Because the Ca(2+) fraction in the ryanodine-IP(3) pool was small in both adult (5 +/- 1%) and fetal (7 +/- 4%) arteries, the IP(3) and ryanodine pools appear to be separate in these arteries. However, the pool sensitive to neither IP(3) nor ryanodine was 10-fold smaller in adult (0.87 +/- 0.10) than in fetal (8.78 +/- 0.81) arteries, where it accounted for 72% of total intracellular membrane-bound Ca(2+). Thus, during basilar artery maturation, intracellular Ca(2+) mass plummets in noncontractile pools, decreases modestly in ryanodine-sensitive pools, and remains constant in IP(3)-sensitive pools. In addition, age-related increases in IP(3) efficacy must involve factors other than IP(3) pool size alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.