Measurements of the shape of electrophoretic bands of phycoerythrin and conalbumin have been made at regular intervals during migration in agarose gels. Analysis of the peak shapes suggests the existence of a significant degree of asymmetry. This is to be contrasted with the symmetry around the peak associated with the generally assumed Gaussian band. The degree of asymmetry of the bands decreased as a function of time and increased with agarose concentration. A similar experiment on DNA indicated constancy of the degree of asymmetry as a function of time. These results can be interpreted as, but do not prove the validity of, a nonlocal diffusion equation which generalizes a theory originally put forth by Giddings and Eyring (J. Am. Chem. Soc. 1955, 59, 416-420). The results may be significant in framing a measure of the resolvability of electrophoretic peaks.
Uncrosslinked polyacrylamide forms gels in the concentration range of 15-40% acrylamide. Electrophoresis in these gels of a commercially available 350 bp heteroduplex DNA preparation separates it from the homoduplex DNA of the same size. The separation is qualitatively equivalent to that previously achieved in a commercial proprietary gel ("Mutation Detection Gel" of AT-Biochem), or in an equivalent 14% T, 0.15% C (N,N'-methylenebisacrylamide) gel, but the mechanical stability of mutation detection electrophoresis (MDE) gels or 0.15% C gels is better than that of uncrosslinked polyacrylamide gels. The separation in any of these three gel media can be carried out in short gel tubes within a few hours of electrophoresis time. In both uncrosslinked polyacrylamide and MDE gel media, the Ferguson plots [log(mobility) vs. gel concentration] and the plots of effective molecular radius vs. gel concentration ("T-plots") of both the heteroduplex and homoduplex DNA indicate an augmented size but similar flexibility upon passage through the gel than exhibited by the components of a DNA standard ladder. Homoduplex and heteroduplex DNA correspondingly exhibit a parallelism of their Ferguson curves in transverse MDE pore gradient gel electrophoresis, suggesting a surface net charge difference, possibly due to a conformational reorientation too subtle to be detected by a shift in the slope of the Ferguson plot, as has been observed once previously with a "kinked" DNA species. The gel fiber radius or length per unit volume of uncrosslinked polyacrylamide and MDE gels do not differ significantly within confidence limits, which are wide compared to unconventionally crosslinked gels, presumably because of their greater swelling.
A method of direct electroelution of intact proteins, without gel sectioning and orthogonal to the orientation of electrophoretic migration, was developed in application to Novex gels, using a simple home-made experimental setup. Six model proteins covering the molecular mass range of 14-120 kDa were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), stained with an aqueous solution of the fluorescent dye, SYPRO-red, and electroeluted from the intact gel. The sensitivity of visual detection was 0.1-0.2 microg upon illumination by a green laser and 0.5-1 microg of protein on side-ways UV-illumination. Duration (for each protein) and field strength were optimized to render protein electroelution from the gel near-quantitative (above 80%) and relatively fast (1-12 min at 1 kV). At a given field strength, the optimal duration was found to be inversely proportional to the mobility of proteins in SDS-PAGE. Sequential ultrafiltration was evaluated as a simple approach to concentrate electroeluted proteins and deplete SDS to a level compatible with mass spectrometry of proteins: protein yields in the electroeluate were 25-33% (depending on the protein used) after three steps of ultrafiltration with water. The analysis of the electroeluate by isoelectric focusing in an immobilized pH gradient, to reveal protein heterogeneity under a single SDS-PAGE band (prior, e.g., to mass spectrometric analysis), was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.