Predictive models are constructed to best describe an observed field's statistics within a given class of nonlinear dynamics driven by a spatially coherent noise that is white in time. For linear dynamics, such inverse stochastic models are obtained by multiple linear regression (MLR). Nonlinear dynamics, when more appropriate, is accommodated by applying multiple polynomial regression (MPR) instead; the resulting model uses polynomial predictors, but the dependence on the regression parameters is linear in both MPR and MLR.The basic concepts are illustrated using the Lorenz convection model, the classical double-well problem, and a three-well problem in two space dimensions. Given a data sample that is long enough, MPR successfully reconstructs the model coefficients in the former two cases, while the resulting inverse model captures the three-regime structure of the system's probability density function (PDF) in the latter case.A novel multilevel generalization of the classic regression procedure is introduced next. In this generalization, the residual stochastic forcing at a given level is subsequently modeled as a function of variables at this level and all the preceding ones. The number of levels is determined so that the lag-0 covariance of the residual forcing converges to a constant matrix, while its lag-1 covariance vanishes.This method has been applied to the output of a three-layer, quasigeostrophic model and to the analysis of Northern Hemisphere wintertime geopotential height anomalies. In both cases, the inverse model simulations reproduce well the multiregime structure of the PDF constructed in the subspace spanned by the dataset's leading empirical orthogonal functions, as well as the detailed spectrum of the dataset's temporal evolution. These encouraging results are interpreted in terms of the modeled low-frequency flow's feedback on the statistics of the subgrid-scale processes.
[1] We construct a network of observed climate indices in the period 1900-2000 and investigate their collective behavior. The results indicate that this network synchronized several times in this period. We find that in those cases where the synchronous state was followed by a steady increase in the coupling strength between the indices, the synchronous state was destroyed, after which a new climate state emerged. These shifts are associated with significant changes in global temperature trend and in ENSO variability. The latest such event is known as the great climate shift of the 1970s. We also find the evidence for such type of behavior in two climate simulations using a state-of-the-art model. This is the first time that this mechanism, which appears consistent with the theory of synchronized chaos, is discovered in a physical system of the size and complexity of the climate system. Citation: Tsonis, A. A., K. Swanson, and S. Kravtsov (2007), A new dynamical mechanism for major climate shifts, Geophys.
Global sea surface temperature (SST) evolution is analyzed by constructing predictive models that best describe the dataset's statistics. These inverse models assume that the system's variability is driven by spatially coherent, additive noise that is white in time and are constructed in the phase space of the dataset's leading empirical orthogonal functions. Multiple linear regression has been widely used to obtain inverse stochastic models; it is generalized here in two ways. First, the dynamics is allowed to be nonlinear by using polynomial regression. Second, a multilevel extension of classic regression allows the additive noise to be correlated in time; to do so, the residual stochastic forcing at a given level is modeled as a function of variables at this level and the preceding ones. The number of variables, as well as the order of nonlinearity, is determined by optimizing model performance.The two-level linear and quadratic models have a better El Niño-Southern Oscillation (ENSO) hindcast skill than their one-level counterparts. Estimates of skewness and kurtosis of the models' simulated Niño-3 index reveal that the quadratic model reproduces better the observed asymmetry between the positive El Niño and negative La Niña events. The benefits of the quadratic model are less clear in terms of its overall, cross-validated hindcast skill; this model outperforms, however, the linear one in predicting the magnitude of extreme SST anomalies.Seasonal ENSO dependence is captured by incorporating additive, as well as multiplicative forcing with a 12-month period into the first level of each model. The quasi-quadrennial ENSO oscillatory mode is robustly simulated by all models. The "spring barrier" of ENSO forecast skill is explained by Floquet and singular vector analysis, which show that the leading ENSO mode becomes strongly damped in summer, while nonnormal optimum growth has a strong peak in December.
Small-scale variation in wind stress due to ocean-atmosphere interaction within the atmospheric boundary layer alters the temporal and spatial scale of Ekman pumping driving the double-gyre circulation of the ocean. A high-resolution quasigeostrophic (QG) ocean model, coupled to a dynamic atmospheric mixed layer, is used to demonstrate that, despite the small spatial scale of the Ekman-pumping anomalies, this phenomenon significantly modifies the large-scale ocean circulation. The primary effect is to decrease the strength of the nonlinear component of the gyre circulation by approximately 30%-40%. This result is due to the highest transient Ekman-pumping anomalies destabilizing the flow in a dynamically sensitive region close to the western boundary current separation. The instability of the jet produces a flux of potential vorticity between the two gyres that acts to weaken both gyres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.