Electrical signals (action and variation potentials) caused by environmental stimuli induce a number of physiological responses in plants including changes in photosynthesis; however, mechanisms of these changes remain unclear. We investigated the influence of the variation potential on photosynthesis in geranium (Pelargonium zonale) under different conditions (control, low external CO₂ concentration, and actinic light absence). The variation potential caused by lamina burning induced a reduction in photosynthesis (decreases in effective quantum yields of photosystem I and II, CO₂ assimilation rate, and stomatal conductance) in unstimulated leaves under control conditions. Changes in the majority of light-stage parameters (photosystem I and II quantum yields, coefficients of photochemical and non-photochemical quenching, quantum yield of non-photochemical energy dissipation in photosystem I due to donor-side limitation) were correlated with a decrease in CO₂ assimilation rate. The changes were similar to those caused by lowering [CO₂]; their magnitudes decreased both under low external CO₂ concentration and without actinic light. These results support the hypothesis that Calvin cycle inactivation plays a key role in photosynthetic response induced by electrical signals. However, a decrease in electron transport through the PSI acceptor side also induced by variation potential was not correlated with a decrease in the CO₂ assimilation rate and did not depend on the external CO₂ concentration or actinic light intensity. Thus, we suggest that there are two different mechanisms of light-stage inactivation induced by the variation potential in geranium: one strongly dependent on dark-stage inactivation and one weakly dependent on dark-stage inactivation.
It is known that numerous stimuli induce electrical signals which can increase a plant's tolerance to stressors, including high temperature. However, the physiological role of local electrical responses (LERs), i.e., responses in the zone of stimulus action, in the plant's tolerance has not been sufficiently investigated. The aim of a current work is to analyze the connection between parameters of LERs with the thermal tolerance of photosynthetic processes in pea. Electrical activity and photosynthetic parameters in pea leaves were registered during transitions of air temperature in a measurement head (from 23 to 30°C, from 30 to 40°C, from 40 to 45°C, and from 45 to 23°C). This stepped heating decreased a photosynthetic assimilation of CO2 and induced generation of LERs in the heated leaf. Amplitudes of LERs, quantity of responses during the heating and the number of temperature transition, which induced the first generation of LERs, varied among different pea plants. Parameters of LERs were weakly connected with the photosynthetic assimilation of CO2 during the heating; however, a residual photosynthetic activity after a treatment by high temperatures increased with the growth of amplitudes and quantity of LERs and with lowering of the number of the heating transition, inducing the first electrical response. The effect was not connected with a photosynthetic activity before heating; similar dependences were also observed for effective and maximal quantum yields of photosystem II after heating. We believe that the observed effect can reflect a positive influence of LERs on the thermal tolerance of photosynthesis. It is possible that the process can participate in a plant's adaptation to stressors.
Local damage (e.g., burning, heating, or crushing) causes the generation and propagation of a variation potential (VP), which is a unique electrical signal in higher plants. A VP influences numerous physiological processes, with photosynthesis and respiration being important targets. VP generation is based on transient inactivation of H+-ATPase in plasma membrane. In this work, we investigated the participation of this inactivation in the development of VP-induced photosynthetic and respiratory responses. Two- to three-week-old pea seedlings (Pisum sativum L.) and their protoplasts were investigated. Photosynthesis and respiration in intact seedlings were measured using a GFS-3000 gas analyzer, Dual-PAM-100 Pulse-Amplitude-Modulation (PAM)-fluorometer, and a Dual-PAM gas-exchange Cuvette 3010-Dual. Electrical activity was measured using extracellular electrodes. The parameters of photosynthetic light reactions in protoplasts were measured using the Dual-PAM-100; photosynthesis- and respiration-related changes in O2 exchange rate were measured using an Oxygraph Plus System. We found that preliminary changes in the activity of H+-ATPase in the plasma membrane (its inactivation by sodium orthovanadate or activation by fusicoccin) influenced the amplitudes and magnitudes of VP-induced photosynthetic and respiratory responses in intact seedlings. Decreases in H+-ATPase activity (sodium orthovanadate treatment) induced fast decreases in photosynthetic activity and increases in respiration in protoplasts. Thus, our results support the effect of H+-ATPase inactivation on VP-induced photosynthetic and respiratory responses.
Macroelectrodes and electrophysiological setup were used in experiments with stems of 15-day-old pumpkin ( Cucurbita pepo L.) seedlings for computer-assisted data recording. It is shown that local bioelectric responses induced by graded local chilling are similar to the receptor potentials of animals. These responses increase gradually with stimulus strength and trigger the action potential generation when a temperature threshold is attained. The excitation threshold of cells in seedling stems displays the phenomenon of accommodation. Parameters of local bioelectric responses induced by intermittent cooling can undergo changes similar to sensitization-habituation patterns. The results indicate that local electrical responses may be involved in early stages of cooling perception in cells of higher plants devoid of locomotive functions.Abbreviations : AP-action potential; LBER-local bioelectric response; RP-receptor potential; ∆ T -temperature shift sufficient for local generation of action potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.