Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photocatalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.
Carbon nitride polymers were prepared for the first time by the pyrolysis of 3,5-disubstituted-1,2,4-triazole derivatives, namely 3,5-diamino-1,2,4-triazole [1] and 3-amino-1,2,4-triazole-5-thiol [2], in bulk as well as in LiCl/KCl salt melts. The reaction of [1] and [2] in bulk yields condensed heptazine-based polymers, while in LiCl/KCl eutectics it leads to the formation of well-defined potassium poly(heptazine imides), according to the results of 13 C NMR and XPS investigations, whose formation resembles that of emeraldine salts of polyaniline. The density functional calculations supported the structural model suggested for potassium poly(heptazine imide) polymer. Owing to the specific reaction path, the products obtained from triazoles therefore show electronic properties rather different to known carbon nitrides, such as band gap and conduction and valence bands positions. With the degree of crystallinity of the reference materials, triazole-derived carbon nitrides are characterized by almost complete absence of steady photoluminescence, charge separation and localization upon excitation seems to be improved. As a consequence, photocatalysts prepared from [2] outperform classical carbon nitrides in a model dye degradation reaction and mesoporous graphitic carbon nitride in hydrogen evolution reaction under visible light irradiation. On its turn, [1] can be conveniently used as a co-monomer in order to prepare carbon nitrides with improved visible light absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.