Nanoparticles have been proposed for several biomedical applications; however, in vivo biodistribution studies to confirm their potential are scarce. Nanodiamonds are carbon nanoparticles that have been recently proposed as a promising biomaterial. In this study, we labeled nanodiamonds with (18)F to study their in vivo biodistribution by positron emission tomography. Moreover, the impact on the biodistribution of their kinetic particle size and of the surfactant agents has been evaluated. Radiolabeled diamond nanoparticles accumulated mainly in the lung, spleen, and liver and were excreted into the urinary tract. The addition of surfactant agents did not lead to significant changes in this pattern, with the exception of a slight reduction in the urinary excretion rate. On the other hand, after filtration of the radiolabeled diamond nanoparticles to remove those with a larger kinetic size, the uptake in the lung and spleen was completely inhibited and significantly reduced in the liver.
A simple set of five components was used to design molecular logic gates based on phthalimide-sensitised Tb(III) luminescence, including the first report of an enabled NOR (EnNOR) gate.
Two dyads containing a naphthalene-like chromophore linked to a pyrrolidine-derived moiety, namely (S,S)- and (R,S)-NPX-PYR, have been synthesised by esterification of (S)- or (R)-naproxen (NPX) with (S)-N-methyl-2-pyrrolidinemethanol (PYR) and submitted to photophysical studies (steady-state and time-resolved fluorescence, as well as laser flash photolysis). The emission spectra of the dyads in acetonitrile were characterised by a typical band centred at 350 nm, identical to that of the reference compound (S)-NPX. However the intensities were clearly different, revealing a significant intramolecular quenching in the dyads, as well as a remarkable stereodifferentiation (factor of 1.6). Accordingly, the fluorescence lifetimes of the two dyads were different from each other and markedly shorter than that of (S)-NPX. The quenching mechanism is intramolecular electron transfer, that is thermodynamically favoured. Exciplex formation, that is nearly thermoneutral, does not compete efficiently. The electron transfer rate constants for (S,S)- and (R,S)-(NPX-PYR) were 1.8 x 10(8) and 2.8 x 10(8) s(-1), respectively. By contrast, no significant intramolecular quenching was observed for the excited triplet states (lambda(max)= 440 nm), generated by laser flash photolysis; this is in agreement with the fact that intramolecular electron transfer is thermodynamically disfavoured, due to the lower energy of excited triplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.