This paper studies the temperature dependence of the electrical resistivity of low-cost commercial graphene-based strips, made from a mixture of epoxy and graphene nanoplatelets. An equivalent homogenous resistivity model is derived from the joint use of experimental data and simulation results obtained by means of a full three-dimensional (3D) numerical electrothermal model. Three different types of macroscopic strips (with surface dimensions of cm2) are analyzed, differing in their percentage of graphene nanoplatelets. The experimental results show a linear trend of resistivity in a wide temperature range (−60°C to +60°C), and a negative temperature coefficient . The derived analytical model of temperature-dependent resistivity follows the simple law commonly adopted for conventional conducting materials, such us copper. The model is then validated by using the graphene strips as heating elements by exploiting the Joule effect. These results suggest that such materials can be used as thermistors in sensing or heating applications.
This paper provides a study of some relevant electro-thermal properties of commercial films made by pressed graphene nano-platelets (GNPs), in view of their use as heating elements in innovative de-icing systems for aerospace applications. The equivalent electrical resistivity and thermal emissivity were studied, by means of models and experimental characterization. Macroscopic strips with a length on the order of tens of centimeters were analyzed, either made by pure GNPs or by composite mixtures of GNPs and a small percentage of polymeric binders. Analytical models are derived and experimentally validated. The thermal response of these graphene films when acting as a heating element is studied and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.