From gene expression to nanotechnology, understanding and controlling DNA requires a detailed knowledge of its higher order structure and dynamics. Here we take advantage of the environment-sensitive photoisomerization of cyanine dyes to probe local and global changes in DNA structure. We report that a covalently attached Cy3 dye undergoes strong enhancement of fluorescence intensity and lifetime when stacked in a nick, gap or overhang region in duplex DNA. This is used to probe hybridization dynamics of a DNA hairpin down to the single-molecule level. We also show that varying the position of a single abasic site up to 20 base pairs away modulates the dye–DNA interaction, indicative of through-backbone allosteric interactions. The phenomenon of stacking-induced fluorescence increase (SIFI) should find widespread use in the study of the structure, dynamics and reactivity of nucleic acids.
Rhodamine 6G (R6G) was adsorbed on cellulose microparticles and fluorescence quantum yields and decays were measured as a function of dye loading. Though no spectroscopic evidence of dye aggregation was found, a noticeable decrease of quantum yield--after correction for reabsorption and reemission of fluorescence--and shortening of decays were observed at the highest loadings. These effects were attributed to the dissipation of the excitation energy by traps constituted by R6G pairs, leading to static and dynamic quenching produced by direct absorption of traps and non-radiative energy transfer from monomers, respectively. Regarding the nature of traps, two extreme approaches were considered: (a) equilibrium between monomers slightly interacting in the ground state and (b) randomly distributed monomers located below a critical distance (statistical traps). Both approaches accounted quantitatively for the observed facts. The effect of energy migration was evaluated through computational simulations. As the concentration of traps could only be indirectly inferred, in some experiments an external energy transfer quencher, Methylene Blue, was coadsorbed and the results were compared with those obtained with pure R6G.
Platelet integrin αIIbβ3 is a key mediator of platelet activation and thrombosis. Upon activation αIIbβ3 undergoes significant conformational rearrangement, inducing complex bidirectional signalling and protein recruitment leading to platelet activation. Reconstituted lipid models of the integrin can enhance our understanding of the structural and mechanistic details of αIIbβ3 behaviour away from the complexity of the platelet machinery. Here, a novel method of αIIbβ3 insertion into Giant Unilamellar Vesicles (GUVs) is described that allows for effective integrin reconstitution unrestricted by lipid composition. αIIbβ3 was inserted into two GUV lipid compositions that seek to better mimic the platelet membrane. First, "nature's own", comprising 32% DOPC, 25% DOPE, 20% CH, 15% SM and 8% DOPS, intended to mimic the platelet cell membrane. Fluorescence Lifetime Correlation Spectroscopy (FLCS) reveals that exposure of the integrin to the activators Mn(2+) or DTT does not influence the diffusion coefficient of αIIbβ3. Similarly, exposure to αIIbβ3's primary ligand fibrinogen (Fg) alone does not affect αIIbβ3's diffusion coefficient. However, addition of Fg with either activator reduces the integrin diffusion coefficient from 2.52 ± 0.29 to μm(2) s(-1) to 1.56 ± 0.26 (Mn(2+)) or 1.49 ± 0.41 μm(2) s(-1) (DTT) which is consistent with aggregation of activated αIIbβ3 induced by fibrinogen binding. The Multichannel Scaler (MCS) trace shows that the integrin-Fg complex diffuses through the confocal volume in clusters. Using the Saffman-Delbrück model as a first approximation, the diffusion coefficient of the complex suggests at least a 20-fold increase in the radius of membrane bound protein, consistent with integrin clustering. Second, αIIbβ3 was also reconstituted into a "raft forming" GUV with well defined liquid disordered (Ld) and liquid ordered (Lo) phases. Using confocal microscopy and lipid partitioning dyes, αIIbβ3 showed an affinity for the DOPC rich Ld phase of the raft forming GUVs, and was effectively excluded from the cholesterol and sphingomyelin rich Lo phase. Activation and Fg binding of the integrin did not alter the distribution of αIIbβ3 between the lipid phases. This observation suggests partitioning of the activated fibrinogen bound αIIbβ3 into cholesterol rich domains is not responsible for the integrin clustering observed.
The impact of the processing method in controlling the polymorphism and field-effect charge mobility of 2,3-thienoimide-based oligothiophenes semiconductors was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.