Proof theory is a central area of mathematical logic of special interest to philosophy. It has its roots in the foundational debate of the 1920s, in particular, in Hilbert’s program in the philosophy of mathematics, which called for a formalization of mathematics, as well as for a proof, using philosophically unproblematic, “finitary” means, that these systems are free from contradiction. Structural proof theory investigates the structure and properties of proofs in different formal deductive systems, including axiomatic derivations, natural deduction, and the sequent calculus. Central results in structural proof theory are the normalization theorem for natural deduction, proved here for both intuitionistic and classical logic, and the cut-elimination theorem for the sequent calculus. In formal systems of number theory formulated in the sequent calculus, the induction rule plays a central role. It can be eliminated from proofs of sequents of a certain elementary form: every proof of an atomic sequent can be transformed into a “simple” proof. This is Hilbert’s central idea for giving finitary consistency proofs. The proof requires a measure of proof complexity called an ordinal notation. The branch of proof theory dealing with mathematical systems such as arithmetic thus has come to be called ordinal proof theory. The theory of ordinal notations is developed here in purely combinatorial terms, and the consistency proof for arithmetic presented in detail.
In this article I defend a form of classical possibilism with an actualist foundation. As a matter of fact, I believe that this position is more in keeping with the classical metaphysical tradition. According to this form of possibilism, I construe possible objects as possible non-existing objects of an existing producing power. Consequently, they are nothing vis-à -vis the modality of their own actual being, although they do exist with regard to the modality of the producing power’s being. The actualist requirement prescribed by the Frege-Quinean criterion of the quantification domain is thus fulfilled; indeed, really possible objects are not actual objects, but their possibility is actual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.