The management of end-of-life tires (ELTs) is one of the main environmental issues that society faces nowadays. Recycling of ELTs appears as one feasible option for tackling the problem, although their incorporation as ground tire rubber (GTR) in other rubber matrices is limited due to poor compatibility. In this research, we report a successful combination of a cryo-grinding process with a chemical treatment for modifying the surface of GTR. Various cryo-grinding protocols were studied until a particle size of 100–150 µm was achieved. Chemical treatments with different acids were also analyzed, resulting in the optimal modification with sulfuric acid (H2SO4). Modified GTR was added to a styrene-butadiene rubber (SBR) matrix. The incorporation of 10 phr of this filler resulted in a composite with improved mechanical performance, with increments of 115% and 761% in tensile strength and elongation at break, respectively. These results validate the use of a recycled material from tire waste as sustainable filler in rubber composites.
Lignocellulosic biomass pyrolysis could be an economically feasible option for forest management as it reduces the need to burn litter and helps in fire prevention thus avoiding the release of carbon dioxide and other greenhouse gases into the atmosphere. This study characterises wood vinegar (WV) obtained via a continuous fast pyrolysis process in terms of its composition, ageing and herbicidal properties. The aqueous WV fraction had a moisture content of 84% in weight and contained more than 200 compounds. Acetic acid, hydroxyacetaldehyde and hydroxyacetone were the major components. No significant differences were found in WV composition according to the starting material (poplar, pine, pruning litter, forest waste). No residual aromatic polycyclic compounds that could be harmful to the environment were detected. In a series of climate-controlled glass chamber experiments, the WV proved to be as effective an inhibitor of seed germination and seedling growth as a contact herbicide acting against weeds, especially through aerial contact. Sprayed WV concentrations of 50, 75 and 100 vol. % were effective against all plant species tested. This product could therefore be of commercial interest and help make biomass pyrolysis economically viable, once environmental exposure limits and the safe application for agricultural and urban use of this product have been established.
The adverse health effects associated with glyphosate, the most widely used herbicide worldwide, is the focus of intense regulatory debate. With studies opposed, some of them confirmed the effects (Zhang et al., 2019) and other studies in other way (Andreotti et al., 2018; Crump, 2020), glyphosate was classified as "probably carcinogenic" for humans
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.