The genus Pseudo-nitzschia contains potentially toxic species of problematic taxonomy, making it one of the most intensively studied diatom genera. The study of 35 clonal strains isolated from the Bilbao estuary, an area that experiences recurrent blooms of Pseudo-nitzschia, revealed the presence of two new species, P. abrensis and P. plurisecta, differing from their congeners in both morphology and gene sequence. The morphological features were analyzed by LM and EM, whereas molecular analyses were based on the internal transcribed spacer (ITS) and large subunit (LSU) regions of the rDNA. P. plurisecta appears closely related to P. cuspidata/P. pseudodelicatissima in the phylogenetic tree, whereas P. abrensis forms a moderately supported clade with P. heimii/P. subpacifica and P. caciantha/P. circumpora. Comparison of the secondary structure of ITS2 regions reveals marked differences in the most highly conserved regions among related taxa. Morphologically, the new species differ from their closest congeners in the arrangement of the poroid sectors and the density of valve striae and fibulae. The two species share similar pigment composition, and belong to the group of Pseudo-nitzschia species containing only chlorophyll c2 and c3 .
In the Nervion River estuary surface samples were taken from March to September 2003 at six sites covering most of the salinity range with the aim to know the biomass and taxonomic composition of phytoplankton assemblages in the different segments. Nine groups of algae including cyanobacteria, diatoms, dinoflagellates, chlorophytes, prasinophytes, euglenophytes, chrysophytes, haptophytes, raphidophytes and cryptophytes were identified by means of a combination of pigment analysis by highperformance liquid chromatography (HPLC) and microscopic observations of live and preserved cells. Diatoms, chlorophytes and cryptophytes were the most abundant algae in terms of cells number, whereas fucoxanthin, peridinin, chlorophyll b (Chl b) and alloxanthin were the most abundant auxiliary pigments. Based on multiple regression analysis, in the outer estuary (stations 0, 1, 2 and 3) about 93% of the chlorophyll a (Chl a) could be explained by algae containing fucoxanthin and by algae containing Chl b, whereas in the rest of the estuary most of the Chl a (about 98%) was accounted for by fucoxanthin, Chl b and alloxanthin containing algae. The study period coincided with that of most active phytoplankton growth in the estuary and fucoxanthin was by far the dominant among those signature pigments. Several diatoms, chrysophytes, haptophytes and raphydophytes were responsible for fucoxanthin among identified species. Besides, dinoflagellates with a pigment pattern corresponding to chrysophytes and type 4 haptophytes were identified among fucoxanthin-bearing algae. Cryptophytes were the most abundant species among those containing alloxanthin. The maximum of Chl b registered at the seaward end in April coincided with a bloom of the prasinophytes Cymbomonas tetramitiformis, whereas the Chl b maxima in late spring and summer were accounted for by prasinophytes in the middle and outer estuary and by several species of chlorophytes in the middle and inner estuary. Other Chl b containing algae were euglenophytes and the dinoflagellate Peridinium chlorophorum. Dinoflagellates constituted generally a minor component of the phytoplankton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.