We present a general study of the frequency and magnetic field dependence of the specific heat power produced during field-driven hysteresis cycles in magnetic nanoparticles with relevance to hyperthermia applications in biomedicine. Employing a kinetic Monte-Carlo method with natural time scales allows us to go beyond the assumptions of small driving field amplitudes and negligible inter-particle interactions, which are fundamental to the applicability of the standard approach based on linear response theory. The method captures the superparamagnetic and fully hysteretic regimes and the transition between them. Our results reveal unexpected dipolar interaction-induced enhancement or suppression of the specific heat power, dependent on the intrinsic statistical properties of particles, which cannot be accounted for by the standard theory. Although the actual heating power is difficult to predict because of the effects of interactions, optimum heating is in the transition region between the superparamagnetic and fully hysteretic regimes.
Nanoparticle‐based magnetic hyperthermia is a well‐known thermal therapy platform studied to treat solid tumors, but its use for monotherapy is limited due to incomplete tumor eradication at hyperthermia temperature (45 °C). It is often combined with chemotherapy for obtaining a more effective therapeutic outcome. Cubic‐shaped cobalt ferrite nanoparticles (Co–Fe NCs) serve as magnetic hyperthermia agents and as a cytotoxic agent due to the known cobalt ion toxicity, allowing the achievement of both heat and cytotoxic effects from a single platform. In addition to this advantage, Co–Fe NCs have the unique ability to form growing chains under an alternating magnetic field (AMF). This unique chain formation, along with the mild hyperthermia and intrinsic cobalt toxicity, leads to complete tumor regression and improved overall survival in an in vivo murine xenograft model, all under clinically approved AMF conditions. Numerical calculations identify magnetic anisotropy as the main Co–Fe NCs’ feature to generate such chain formations. This novel combination therapy can improve the effects of magnetic hyperthermia, inaugurating investigation of mechanical behaviors of nanoparticles under AMF, as a new avenue for cancer therapy.
We consider the probability of a magnetic nanoparticle to flip its magnetisation near the blocking temperature, and use this to develop quasi-analytic expressions for the zero-field-cooled and field-cooled magnetisation, which go beyond the usual critical energy barrier approach to the superparamagnetic transition. The particles in the assembly are assumed to have random alignment of easy axes, and to not interact. We consider all particles to be of the same size and then extend the theory to treat polydisperse systems of particles. In particular, we find that the mode blocking temperature is at a lower temperature than the peak in the zero-field-cooled magnetisation versus temperature curve, in agreement with experiment and previous rate-equation simulations, but in contrast to the assumption many researchers use to analyse experimental data. We show that the quasi-analytic expressions agree with Monte Carlo simulation results but have the advantage of being very quick to use to fit data. We also give an example of fitting experimental data and extracting the anisotropy energy density K.
Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 10 7 A cm −2 . Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.
The controlled size and surface treatment of magnetic nanoparticles (NPs) make one‐stage combination feasible for enhanced magnetic resonance imaging (MRI) contrast and effective hyperthermia. However, superparamagnetic behavior, essential for avoiding the aggregation of magnetic NPs, substantially limits their performance. Here, a superparamagnetic core–shell structure is developed, which promotes the formation of vortex‐like intraparticle magnetization structures in the remanent state, leading to reduced dipolar interactions between two neighboring NPs, while during an MRI scan, the presence of a DC magnetic field induces the formation of NP chains, introducing increased local inhomogeneous dipole fields that enhance relaxivity. The core–shell NPs also reveal an augmented anisotropy, due to exchange coupling to the high anisotropy core, which enhances the specific absorption rate. This in vivo tumor study reveals that the tumor cells can be clearly diagnosed during an MRI scan and the tumor size is substantially reduced through hyperthermia therapy by using the same FePt@iron oxide nanoparticles, realizing the concept of theranostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.