Much smoother surfaces and significantly improved superconducting properties of relatively thick YBa2Cu3O7 (YBCO) films have been achieved by introducing a multilayered structure with alternating main YBCO and additional NdBCO layers. The surface of thick (1 µm) multilayers has almost no holes compared to YBCO films. Critical current density (Jc) have been drastically increased up to a factor > 3 in 1 µm multilayered structures compared to YBCO films over entire temperature and applied magnetic filed range. Moreover, Jc values measured in thick multilayers are even larger than in much thinner YBCO films. The Jc and surface improvement have been analysed and attributed to growth conditions and corresponding structural peculiarities.
The vortex pinning model based on the presence of the large number of edge dislocations in high quality YBa 2 Cu 3 O 7 (YBCO) films and multilayers has been refined. By introducing the pinning potential of a chain of individual edge dislocations, we have been able not only to describe the critical current density dependence on the applied magnetic field over its entire range, but also to extract the microstructural parameters in the films, such as interdislocation spacing and average domain size, without employing sophisticated microstructural analysis. The model applicability and its results have been verified with the help of microstructural characterization combined with magneto-optical imaging in YBCO films and multilayers with different properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.