Gastric cancer is the fourth most prevalent malignancy worldwide and remains the second most common cause of cancer-related death globally. Understanding the molecular structure of gastric carcinogenesis might identify new diagnostic and therapeutic strategies for this disease. Thus, early detection of gastric cancer is a key measure to reduce the mortality and improve the prognosis of gastric cancer. There have recently been several reports that microRNAs (miRNAs) circulate in highly stable, cell-free forms in blood. Because serum and plasma miRNAs are relatively easy to access, circulating miRNAs also have great potential to serve as non-invasive biomarkers. Although a number of miRNAs associated with gastric cancer have been identified, the underlying mechanism of these miRNAs in tumorigenesis and tumor progression remains to be investigated. The purpose of this study is to identify the potential of serum miRNAs as biomarkers for early detection of gastric cancer patients. RNA was isolated using the High Pure miRNA Isolation Kit (Roche) following the manufacturer's protocol. cDNA and preamplification protocols were obtained from the isolated plasma miRNAs. The BioMark™ 96.96 Dynamic Array (Fluidigm Corporation) for real-time qPCR was used to simultaneously quantite the expression of 740 miRNAs. All statistical analyses were performed using the Biogazelle's qbase PLUS 2.0 software. In this study, among 740 miRNAs that we analyzed only miR-195-5p was significantly (p < 0.05, fold changes = 13, 3) down-regulated in gastric cancer patients compared with control. We demonstrated that miR-195-5p is a novel tumor suppressor miRNA and may contribute to gastric carcinogenesis. The miRNA expression profile described in this study should contribute to future studies on the role of miRNAs in gastric cancer.
Our study suggests that the miRNAs with significant changes in expression (miR-19a-3p, miR-25-3p, miR-30a-5p, miR-145-5p and miR-186-5p) could serve as novel noninvasive biomarkers for detection of NMSC.
BackgroundTherapeutic hypothermia (TH) has become standard care in newborns with moderate to severe hypoxic ischemic encephalopathy (HIE), and the 2 most commonly used methods are selective head cooling (SHC) and whole body cooling (WBC). This study aimed to determine if the effects of the 2 methods on some neural and inflammatory biomarkers differ.Materials and methodsThis prospective randomized pilot study included newborns delivered after >36 weeks of gestation. SHC or WBC was administered randomly to newborns with moderate to severe HIE that were prescribed TH. The serum interleukin (IL)-1β, IL-6, neuron-specific enolase (NSE), brain-specific creatine kinase (CK-BB), tumor necrosis factor-alpha (TNF-α), and protein S100 levels, the urine S100B level, and the urine lactate/creatinine (L/C) ratio were evaluated 6 and 72 h after birth. The Bayley Scales of Infant and Toddler Development-III was administered at month 12 for assessment of neurodevelopmental findings.ResultsThe SHC group included 14 newborns, the WBC group included 10, the mild HIE group included 7, and the control group included 9. All the biomarker levels in the SHC and WBC groups at 6 and 72 h were similar, and all the changes in the biomarker levels between 6 and 72 h were similar in both groups. The serum IL-6 and protein S100 levels at 6 h in the SHC and WBC groups were significantly higher than in the control group. The urine L/C ratio at 6 h in the SHC and WBC groups was significantly higher than in the mild HIE and control groups. The IL-6 level and L/C ratio at 6 and 72 h in the patients that had died or had disability at month 12 were significantly higher than in the patients without disability at month 12.ConclusionThe effects of SHC and WBC on the biomarkers evaluated did not differ. The urine L/C ratio might be useful for differentiating newborns with moderate and severe HIE from those with mild HIE. Furthermore, the serum IL-6 level and the L/C ratio might be useful for predicting disability and mortality in newborns with HIE.
MicroRNA (miRNA) is an abundant class of small non-coding RNAs that act as gene regulators. Recent studies have suggested that miRNA deregulation is associated with the initiation and progression of human cancer. However, information about ovarian cancer-related miRNA is mostly limited to tissue miRNA. The aim of this study was to find specific profiles of plasma-derived miRNAs of ovarian cancer. In this present study, the expression profiles of 740 miRNAs in plasma from 18 patients and 24 healthy women subjects were evaluated using microfluidic based multiplex qRT-PCR. Our results demonstrated that expression levels of eight miRNAs were significantly upregulated in patients with ovarian cancer when compared with a control group (p < 0.05). Expression levels of four miRNAs were found significantly downregulated in patients with ovarian cancer (p < 0.05). In addition, 10 miRNAs were expressed only in the ovarian cancer group and miR-138-5p of these miRNAs is ovarian specific. In conclusion, our study suggests that detecting these ovarian cancer specific miRNAs in plasma might serve as novel non-invasive biomarkers for ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.