Abstract-A Taylor Expansion Diagram (TED) is a compact, word-level, canonical representation for data flow computations that can be expressed as multivariate polynomials. TEDs are based on a decomposition scheme using Taylor series expansion that allows one to model word-level signals as algebraic symbols. This power of abstraction, combined with the canonicity and compactness of TED, makes it applicable to equivalence verification of dataflow designs. The paper describes the theory of TEDs and proves their canonicity. It shows how to construct a TED from an HDL design specification and discusses the application of TEDs in proving the equivalence of such designs. Experiments were performed with a variety of designs to observe the potential and limitations of TEDs for dataflow design verification. Application of TEDs to algorithmic and behavioral verification is demonstrated. Index Terms-Register transfer level-design aids, verification; arithmetic and logic structures-verification; symbolic and algebraic manipulation.
This paper describes an efficient method to perform factorization of DSP transforms based on Taylor ExpansionDiagram (TED). It is shown that TED can efficiently represent and manipulate mathematical expressions. We demonstrate that it enables efficient factorization of arithmetic expressions of DSP transforms, resulting in a simplification of the computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.