Background Traditional quantitative structure-activity relationship models usually neglect the molecular alterations happening in the exposed systems (the mechanism of action, MOA), that mediate between structural properties of compounds and phenotypic effects of an exposure. Results Here, we propose a computational strategy that integrates molecular descriptors and MOA information to better explain the mechanisms underlying biological endpoints of interest. By applying our methodology, we obtained a statistically robust and validated model to predict the binding affinity to human serum albumin. Our model is also able to provide new venues for the interpretation of the chemical-biological interactions. Conclusion Our observations suggest that integrated quantitative models of structural and MOA-activity relationships are promising complementary tools in the arsenal of strategies aiming at developing new safe- and useful-by-design compounds. Electronic supplementary material The online version of this article (10.1186/s13321-019-0359-2) contains supplementary material, which is available to authorized users.
Summary Quantitative structure–activity relationship (QSAR) modelling is currently used in multiple fields to relate structural properties of compounds to their biological activities. This technique is also used for drug design purposes with the aim of predicting parameters that determine drug behaviour. To this end, a sophisticated process, involving various analytical steps concatenated in series, is employed to identify and fine-tune the optimal set of predictors from a large dataset of molecular descriptors (MDs). The search of the optimal model requires to optimize multiple objectives at the same time, as the aim is to obtain the minimal set of features that maximizes the goodness of fit and the applicability domain (AD). Hence, a multi-objective optimization strategy, improving multiple parameters in parallel, can be applied. Here we propose a new multi-niche multi-objective genetic algorithm that simultaneously enables stable feature selection as well as obtaining robust and validated regression models with maximized AD. We benchmarked our method on two simulated datasets. Moreover, we analyzed an aquatic acute toxicity dataset and compared the performances of single- and multi-objective fitness functions on different regression models. Our results show that our multi-objective algorithm is a valid alternative to classical QSAR modelling strategy, for continuous response values, since it automatically finds the model with the best compromise between statistical robustness, predictive performance, widest AD, and the smallest number of MDs. Availability and implementation The python implementation of MaNGA is available at https://github.com/Greco-Lab/MaNGA. Supplementary information Supplementary data are available at Bioinformatics online.
Quantitative structure-activity relationship (QSAR) modelling is a major tool employed in the prediction of various endpoints. However, current QSAR literature is missing a full understanding of the impact of quantum chemical calculation methods on the estimation of molecular descriptors and model performance. Here, we provide a comprehensive analysis of the quantitative effects of different geometry optimization methods (semi-empirical, ab initio Hartee-Fock and density functional theory) on the molecular descriptors. Using experimental binding affinity to human serum albumin (HSA) data, we comparatively investigated the influence of employing descriptors derived from three calculation methods on the QSAR models. We propose a 4-descriptor QSAR model in line with the OECD validation principles for the prediction of drug binding affinity to HSA (log K) as a potential tool for drug development. We also confirm the prediction capability of the proposed model on a heterogeneous external set of chemicals. Furthermore, we recommend an activity-independent rational approach for the selection of geometry optimization method for an improved QSAR model development.
The authors modeled the 72-h algal toxicity data of hundreds of chemicals with different modes of action as a function of chemical structures. They developed mode of action-based local quantitative structure-toxicity relationship (QSTR) models for nonpolar and polar narcotics as well as a global QSTR model with a wide applicability potential for industrial chemicals and pharmaceuticals. The present study rigorously evaluated the generated models, meeting the Organisation for Economic Co-operation and Development principles of robustness, validity, and transparency. The proposed global model had a broad structural coverage for the toxicity prediction of diverse chemicals (some of which are high-production volume chemicals) with no experimental toxicity data. The global model is potentially useful for endpoint predictions, the evaluation of algal toxicity screening, and the prioritization of chemicals, as well as for the decision of further testing and the development of risk-management measures in a scientific and regulatory frame. Environ Toxicol Chem 2017;36:1012-1019. © 2016 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.