Streptococcus suis is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, of which serotype 2 is the most widespread, with serotype 14 also causing infections in humans in South-East Asia. Knowledge of its pathogenesis and virulence are almost exclusively based on these two serotypes. Though serotype 9 is responsible for the greatest number of porcine cases in Spain, the Netherlands and Germany, very little information is currently available regarding this serotype. Of the different virulence factors, the capsular polysaccharide (CPS) is required for S. suis virulence as it promotes resistance to phagocytosis and killing and masks surface components responsible for host cell activation. However, these roles have been described for serotypes 2 and 14, whose CPSs are structurally and compositionally similar, both containing sialic acid. Consequently, we evaluated herein the interactions of serotype 9 with host cells and the role of its CPS, which greatly differs from those of serotypes 2 and 14. Results demonstrated that serotype 9 adhesion to but not invasion of respiratory epithelial cells was greater than that of serotypes 2 and 14. Furthermore serotype 9 was more internalized by macrophages but equally resistant to whole blood killing. Though recognition of serotypes 2, 9 and 14 by DCs required MyD88-dependent signaling, in vitro pro-inflammatory mediator production induced by serotype 9 was much lower. In vivo, however, serotype 9 causes an exacerbated inflammatory response, which combined with persistent bacterial presence, is probably responsible for host death during the systemic infection. Though presence of the serotype 9 CPS masks surface components less efficiently than those of serotypes 2 and 14, the serotype 9 CPS remains critical for virulence as it is required for survival in blood and development of clinical disease, and this regardless of its unique composition and structure.
Streptococcus suis serotype 2 is an important porcine bacterial pathogen associated with multiple pathologies in piglets. Bacterial lipoproteins (LPPs) have been described as playing important roles in the pathogenesis of the infection of other Gram-positive bacteria as adhesins, pro-inflammatory cell activators and/or virulence factors. In the current study, we aimed to evaluate the role of the prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) enzymes, which are responsible for LPP maturation, on the pathogenesis of the infection caused by two different sequence types (STs) of S. suis serotype 2 strains (virulent ST1 and highly virulent ST7). Through the use of isogenic Δlgt, Δlsp and double Δlgt/Δlsp mutants, it was shown that lack of these enzymes did not influence S. suis adhesion/invasion to porcine respiratory epithelial cells. However, in the absence of the Lsp and/or Lgt, a significant reduction in the capacity of S. suis to activate phagocytic cells and induce pro-inflammatory mediators (in vitro and in vivo) was observed. In general, results obtained with the double mutant did not differ in comparison to single mutants, indicating lack of an additive effect. Finally, our data suggest that these enzymes play a differential role in virulence, depending on the genetic background of the strain and being more important for the highly virulent ST7 strain.
Streptococcus suis serotype 2 is an important bacterial pathogen of swine, responsible for substantial economic losses to the swine industry worldwide. The knowledge on the pathogenesis of the infection caused by S. suis is still poorly known. It has been previously described that S. suis possesses at least one lipoprotein with double laminin and zinc (Zn)-binding properties, which was described in the literature as either laminin-binding protein (Lmb, as in the current study), lipoprotein 103, CDS 0330 or AdcAII. In the present study, the role of the Lmb in the pathogenesis of the infection caused by S. suis serotype 2 was dissected. Using isogenic mutants, results showed that Lmb does not play an important role in the laminin-binding activity of S. suis, even when clearly exposed at the bacterial surface. In addition, the presence of this lipoprotein does not influence bacterial adhesion to and invasion of porcine respiratory epithelial and brain endothelial cells and it does not increase the susceptibility of S. suis to phagocytosis. On the other hand, the Lmb was shown to play an important role as cytokine activator when tested in vitro with dendritic cells. Finally, this lipoprotein plays a critical role in Zn acquisition from the host environment allowing bacteria to grow in vivo. The significant lower virulence of the Lmb defective mutant may be related to a combination of a lower bacterial survival due to the incapacity to acquire Zn from their surrounding milieu and a reduced cytokine activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.