The advance of the onset of the Indian monsoon is here explained in terms of a balance between the low-level monsoon flow and an overrunning intrusion of mid-tropospheric dry air. The monsoon advances, over a period of about 6 weeks, from the south of the country to the northwest. Given that the low-level monsoon winds are westerly or southwesterly, and the mid-level winds northwesterly, the monsoon onset propagates upwind relative to midlevel flow, and perpendicular to the low-level flow, and is not directly caused by moisture flux toward the northwest. Lacking a conceptual model for the advance means that it has been hard to understand and correct known biases in weather and climate prediction models.The mid-level northwesterlies form a wedge of dry air that is deep in the far northwest of India and over-runs the monsoon flow. The dry layer is moistened from below by shallow cumulus and congestus clouds, so that the profile becomes much closer to moist adiabatic, and the dry layer is much shallower in the vertical, toward the southeast of India. The profiles associated with this dry air show how the most favourable environment for deep convection occurs in the south, and onset occurs here first.As the onset advances across India, the advection of moisture from the Arabian Sea becomes stronger, and the mid-level dry air is increasingly moistened from below. This increased moistening makes the wedge of dry air shallower throughout its horizontal extent, and forces the northern limit of moist convection to move toward the northwest. Wetting of the land surface by rainfall will further reinforce the north-westward progression, by sustaining the supply of boundary-layer moisture and shallow cumulus. The local advance of the monsoon onset is coincident with weakening of the mid-level northwesterlies, and therefore weakened mid-level dry advection.
Extremely dry conditions were experienced across most of southern Africa during the austral summer (October–March) of 2015/2016, associated with one of the strongest observed El Niño events in the Pacific. Dry conditions peaked in the early austral summer months (October–December) producing the most intense drought in the 116‐year historical record, as measured by the intensity of the standardized precipitation index across all spatial scales up to the sub‐continental. We estimate the return period of this extreme early summer drought to be greater than 200 years. The interior and eastern parts of South Africa were particularly hard‐hit with station data showing rainfall totals being at their lowest since at least 1950. The early summer dry conditions make the 2015/2016 event atypical compared to past El Niño events of similar magnitude. We find that key regional circulation patterns, influenced by planetary‐scale processes, play an important role in modulating the spatial and temporal evolution of the summer rainfall during these El Niño events. Specifically, (a) the Angola Low and the South Indian Ocean High, two dominant low‐level circulation features that drive moisture convergence to support convective precipitation in the region, were anomalously weakened in early austral summer of 2015/2016 resulting in less moisture being transported over the continent, and (b) the mid‐level Botswana High was stronger than in previous El Niño years further producing unfavourable conditions for rainfall through stronger subsidence in the mid‐ to upper levels over southern Africa.
Abstract. The direct radiative impacts of biomass burning aerosols (BBA) on meteorology are investigated using shortrange forecasts from the Met Office Unified Model (MetUM) over South America during the South American Biomass Burning Analysis (SAMBBA). The impacts are evaluated using a set of three simulations: (i) no aerosols, (ii) with monthly mean aerosol climatologies and (iii) with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC) scheme. Comparison with observations show that the prognostic CLAS-SIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of 2-day forecasts during 14 September-3 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m −2 and reduces net top-of-atmosphere (TOA) radiation by 8 ± 1 W m −2 , with a direct atmospheric warming of 7 ± 1 W m −2 . BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m −2 at the surface and 4.0 ± 1 W m −2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earthatmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface, the mean 2 m air temperature is reduced by around 0.1 ± 0.02 • C. The BBA also cools the boundary layer (BL) but warms air above by around 0.2 • C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s −1 . Inclusion of climatological or prognostic BBA in the MetUM makes a small but significant improvement in forecasts of temperature and relative humidity, but improvements were small compare with model error and the relative increase in forecast skill from the prognostic aerosol simulation over the aerosol climatology was also small. Locally, on a 150 km scale, changes in precipitation reach around 4 mm day −1 due to changes in the location of convection. Over Amazonia, including BBA in the simulation led to fewer rain events that were more intense. This change may be linked to the BBA changing the vertical profile of stability in the lower atmosphere. The localised changes in rainfall tend to average out to give a 5 % (0.06 mm day −1 ) decrease in total precipitation over the Amazonian region (except on day 2 with prognostic BBA). The change in water budget from BBA is, however, dominated by decreased evapotranspiration from the reduced net surface fluxes (0.2 to 0.3 mm day −1 ), since this term is larger than the corresponding changes in precipitation and water vapour convergence.
Water is a critical resource, but ensuring it is available faces challenges from climate extremes and human intervention. In this Review, we evaluate the current and historical evolution of water resources, considering surface water and groundwater as a single, interconnected resource. Gravity Recovery And Climate Experiment (GRACE) satellite data show declining, stable, and rising trends in total water storage over the past two decades in various regions globally. Groundwater monitoring provide longer term context over the past century, showing rising water storage in Northwest India, Central Pakistan, and Northwest United States and declining water storage in the US High Plains and Central Valley. Climate variability causes some changes in water storage but human intervention, particularly irrigation, is a major driver. Waterresource resilience can be increased by diversifying management strategies. These approaches include green solutions, such as forest and wetland preservation, and gray solutions, including increasing supplies (desalination, wastewater reuse), enhancing storage in surface reservoirs and depleted aquifers, and transporting water. A diverse portfolio of these solutions, in tandem with managing groundwater and surface water as a single resource, can address human and ecosystem needs while building a resilient water system.Water is a critical resource, but ensuring it is available faces challenges from climate extremes and human intervention. In this Review, we evaluate the current and historical evolution of water resources, considering surface water and groundwater as a single, interconnected resource. Total water storage trends varied among regions over the past century. Some areas, including Northwest India, Central Pakistan, and Northwest United States, have seen rises in water storage over the past century. Others, including the US High Plains and Central Valley, have experienced net declines. Climate variability causes some changes in water storage but human intervention, particularly irrigation, is a major driver. Waterresource resilience can be increased by diversifying management strategies. These approaches include green solutions, such as forest and wetland preservation, and gray solutions, including increasing supplies (desalination, wastewater reuse), enhancing storage in surface reservoirs and depleted aquifers, and transporting water. A diverse portfolio of these solutions, in tandem with managing groundwater and surface water as a single resource, can address human and ecosystem needs while building a resilient water system.
Abstract. The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the Equator (EASE), during the major El Niño event of 2015–2016, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and Gravity Recovery and Climate Experiment (GRACE) satellite data. At the continental scale, the El Niño of 2015–2016 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north–south of ∼12∘ S, a characteristic pattern of the El Niño–Southern Oscillation (ENSO). Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the standardised precipitation evapotranspiration index – SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing, and we estimate that anthropogenic warming only (ignoring changes to other climate variables, e.g. precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the Limpopo basin. Conversely, over EASE during the 2015–2016 El Niño event, anomalously wet conditions were observed with an estimated return period of ∼10 years, likely moderated by the absence of a strongly positive Indian Ocean zonal mode phase. The strong but not extreme rainy season increased groundwater storage, as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.