Testis blood flow per testis closely follows testis weight in rats made aspermatogenic by a single exposure of the testis to 43°C for 30 min or 500 rad (5 Gy) of irradiation from a caesium source, or following ligation of the efferent ducts. Aspermatogenesis following these treatments was associated with only minor changes in the concentrations of testosterone in peripheral blood before stimulation with human chorionic gonadotrophin (hCG), and a reduced responsiveness to hCG when testis weight had fallen after heating. The concentrations of testosterone in testicular venous blood was normal or above normal during aspermatogenesis resulting from heat or irradiation, and only slightly reduced following efferent duct ligation.Consequently testosterone production (defined as the product of plasma flow and the venoarterial concentration difference for testosterone) was markedly reduced during aspermatogenesis, both before and after stimulation with hCG. It appears that the reduced blood flow limits the amount of testosterone leaving the testis, and while the Leydig cells are capable under some circumstances of compensating partially for this fall by increasing the concentration of testosterone in the testicular venous blood, this compensation is not complete when there are severe reductions in blood flow. Therefore one can conclude that the mass of the tubules is the main determinant of testis blood flow and the Leydig cells must manage with what the tubules require.
The purpose of this study was to assess the concentrations of LH that Leydig cells are exposed to upon in vivo stimulation of steroidogenesis. The concentrations of LH were measured in rats in testicular interstitial extracellular fluid, seminiferous tubular fluid and blood plasma from testicular veins from one testis before and from the other testis of the same rats after an intravenous injection of gonadotrophin-releasing hormone (GnRH) or saline, and compared with the concentrations in blood plasma from a peripheral vein. The concentrations of LH in interstitial fluid surrounding the Leydig cells before the injections were about 10% of the levels in blood plasma, and showed no significant rise at 15 min and a much smaller rise at later times in rats injected with GnRH than those seen in blood plasma from either of the two sources, which were similar. The concentrations of LH in tubular fluid were even lower and showed no change after GnRH. Testosterone concentrations in testicular cells, interstitial fluid and testicular venous blood plasma were significantly increased by 15 min after GnRH, when compared with saline-injected controls, with no change in the levels in tubular fluid. The rise in testosterone concentrations in testicular venous plasma after GnRH was smaller than those in the cells and interstitial fluid. In conclusion, the concentrations of LH reaching the testicular interstitial fluid were only about one-tenth of that measured in the circulation, presumably because the endothelial cells restrict access of the hormone to the interstitial fluid. This indicated that either the Leydig cells are extremely sensitive to LH stimulation or that testicular endothelial cells modulate the action of LH on the Leydig cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.