In case of some nuclear reactors, seawater is used as an emergency resource to remove the decay heat from the reactor core. This study aims to improve the understanding of boiling heat transfer with seawater coolants. Under the boiling conditions with seawater, the mass transfer of the dissolved impurities to the heated surface is expected to significantly impact the heat transfer characteristics. The focus of this experimental work is to measure the differences of the heat transfer performance between seawater and tapwater with electrically heated cylindrical section in a vertical annulus. High speed visualization is performed to quantify and characterize the bubble dynamics parameters. The experimental results indicate an enhanced heat transfer coefficient with seawater in the initial transient under saturated boiling followed by an asymptotic reduction to values similar to tapwater. Under subcooled boiling, a consistent reduced heat transfer coefficient was observed in seawater for a range of heat fluxes. The high speed visualization of subcooled boiling showed fewer and smaller bubbles nucleating off the heat transfer surface in seawater indicating a lower evaporative flux as compared to tapwater.
Recent studies have shown that the presence of dissolved salts in water can exhibit peculiar flow boiling and two-phase flow regimes. Two-phase flow and convective flow boiling are typically characterized with the help of void fraction measurements. To quantitatively improve our understanding of two-phase flow and boiling phenomenon with seawater coolant, void fraction data are needed, which can not be obtained from optical imaging. In this paper, we present experimental void fraction measurements of saturated flow boiling of tap water and seawater using X-ray radiography. X-rays with a maximum energy level of 40 KeV were used for imaging the exit region of the heated test section. At lower heat flux levels, the two phase flow in seawater was bubbly and homogeneous in nature, resulting in higher void fractions as compared to tap water. With an increase in heat flux, the flow regime was similar to slug flow, and void fraction measurements approached similarity with tap water. The predicted pressure drop using the measured void faction shows good agreement with the measured total pressure drop across the test section, demonstrating the validity of the measurement process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.