Abstract. Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet •4C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition.For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr -l, backof-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.
The majority of sediment leaving catchments may be from streambank failure. Seepage erosion of unconsolidated sand above a restrictive layer is an important erosion process in incised streams that leads to streambank failure by undercutting banks. The objective of this study was to determine the impact of soil properties on seepage erosion and the resulting streambank failure. Seepage flow and sediment concentrations were measured in situ at eight locations along the banks of a deeply incised stream in northern Mississippi. Using field observations as a guide, the soil profile conditions of a shallow (45 cm) streambank, consisting of 30 cm of topsoil, a 10 cm conductive layer, and a 5 cm restrictive layer, were mimicked in laboratory lysimeter experiments to quantify the hydrologic properties controlling seepage erosion and bank failure under a 40 cm head. The time to flow initiation and the flow rate were linearly related to the slope of the restrictive layer. Seepage erosion began within minutes of flow initiation and resulted in substantial (3 to 34 cm) undercutting of the bank. Sediment concentrations of seeps were as high as 660 g l − − − − −1 in situ and 4500 g l − − − − −1 in the lysimeters. Sediment concentrations were related to the layer slope, thereby indicating the importance of detailed site characterization. The USDA-ARS Streambank Stability model demonstrated the increase in instability of banks due to undercutting by seepage erosion, but failed to account for the sediment loss due to sapping for stable banks and overestimated the sediment loads for failed banks. Published in C a = ψ tan φ b (1) 448 G. V. Wilson et al.
This review summarizes how conservation benefits are maximized when in‐field and edge‐of‐field buffers are integrated with each other and with other conservation practices such as residue management and grade control structures. Buffers improve both surface and subsurface water quality. Soils under permanent buffer vegetation generally have higher organic carbon concentrations, higher infiltration capacities, and more active microbial populations than similar soils under annual cropping. Sediment can be trapped with rather narrow buffers, but extensive buffers are better at transforming dissolved pollutants. Buffers improve surface runoff water quality most efficiently when flows through them are slow, shallow, and diffuse. Vegetative barriers ‐ narrow strips of dense, erect grass ‐ can slow and spread concentrated runoff. Subsurface processing is best on shallow soils that provide increased hydrologic contact between the ground water plume and buffer vegetation. Vegetated ditches and constructed wetlands can act as “after‐field” conservation buffers, processing pollutants that escape from fields. For these buffers to function efficiently, it is critical that in‐field and edge‐of‐field practices limit peak runoff rate and sediment yield in order to maximize contact time with buffer vegetation and minimize the need for cleanout excavation that destroys vegetation and its processing capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.