Techniques to isolate the small RNA fraction (<200nt) by column-based methods are commercially available. However, their use is limited because of the relatively high cost. We found that large RNA molecules, including mRNAs and rRNAs, are aggregated together in the presence of salts when RNA pellets are over-dried. Moreover, once RNA pellets are over-dried, large RNA molecules are barely soluble again during the elution process, whereas small RNA molecules (<100nt) can be eluted. We therefore modified the acid guanidinium thiocyanate-phenol-chloroform (AGPC)-based RNA extraction protocol by skipping the 70% ethanol washing step and over-drying the RNA pellet for 1 hour at room temperature. We named this novel small RNA isolation method “mirRICH.” The quality of the small RNA sequences was validated by electrophoresis, next-generation sequencing, and quantitative PCR, and the findings support that our newly developed column-free method can successfully and efficiently isolate small RNAs from over-dried RNA pellets.
SummarymiRNAs are small, non-coding RNAs that play critical roles in various cellular processes. Although there are several algorithms that can predict the potential candidate genes that are regulated by a miRNA, these algorithms require further experimental validation in order to demonstrate genuine targets of miRNAs. Moreover, most algorithms predict hundreds to thousands of putative target genes for each miRNA, and it is difficult to validate all candidates using the whole 3′-untranslated region (UTR) reporter assay. We report a fast, simple and efficient experimental approach to screening miRNA candidate targets using a 3′-UTR linker assay. Critically, the linker has only a short miRNA regulatory element sequence of approximately 22 base pairs in length and can provide a benefit for screening strong miRNA candidates for further validation using the whole 3′-UTR sequence. Our technique will provide a simplified platform for the high-throughput screening of miRNA target gene validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.