For anatomical restoration of a repaired rotator cuff, mechanical augmentation of the repaired structure is essential. Using histological and biomechanical evaluation in a rat model, the authors sought to determine the efficacy of an absorbable alginate sheet at the supraspinatus tendon-to-bone repair site for healing of the rotator cuff tear. Forty adult (12 weeks old) male Sprague– Dawley wild-type rats were used in this study. The animals were randomly separated into 2 groups: group 1, conventional supraspinatus repair with acute repair; or group 2, supraspinatus repair with absorbable alginate sheet. Biomechanical and histological analyses were performed at 6 and 12 weeks after index rotator cuff surgery. Compared with group 1, group 2 exhibited a significantly greater mean ultimate failure load (group 1, 23.70±3.87 N; group 2, 61.44±43.67 N; P =.023) and mean ultimate stress (group 1, 2.83±0.50 MPa; group 2, 7.36±2.87 MPa; P =.020). However, 6-week outcomes were not significantly different. On histological scoring, compared with group 1, group 2 exhibited a significantly greater mean 6-week score (group 1, 4.10±1.72 points; group 2, 7.80±1.47 points; P <.001) and mean 12-week score (group 1, 3.50±1.00 points; group 2, 5.25±2.62 points; P =.020). Mechanical augmentation with absorbable alginate may improve tendon healing after surgical repair of the rotator cuff. [ Orthopedics . 2019; 42(1):e104–e110.]
Purpose Osteoarthritis (OA) in the glenohumeral joint is a concomitant lesion with rotator cuff tear that commonly occurs in older patients. The authors aimed to evaluate the effect of associated OA on the treatment outcome of rotator cuff repair. Methods A total of three hundred and forty-eight patients who underwent full-thickness arthroscopic rotator cuff repair were retrospectively reviewed, and the data were prospectively collected. The severity of OA was evaluated using the Samilson and Prieto method preoperatively and the Outerbridge classification intraoperatively. The patients were divided into the small-to-medium group and large-to-massive group according to rotator cuff tear size and were evaluated for presence or absence of OA. The postoperative clinical outcomes were assessed using the visual analog scale for pain, simple shoulder test (SST), University of California-Los Angeles, Constant, and American Shoulder and Elbow Surgeons (ASES) scoring systems at baseline and at final follow-up. Results Forty-five patients were diagnosed with glenohumeral OA (12.9%). Overall, no significant differences were observed in demographic and baseline data between the two groups according to the presence or absence of OA. The clinical symptoms of both groups significantly improved at the final follow-up. At the final follow-up, no significant differences were found in the VAS for pain, SST, UCLA, Constant, and ASES scores between the two groups. In the large-to-massive tear group, patients with OA had significantly inferior clinical results compared with those without OA. ConclusionThe clinical outcome scores improved after rotator cuff repair regardless of the presence of concomitant OA. However, glenohumeral OA should be considered as a potential negative prognostic factor in patients with large-to-massive rotator cuff tears. Level of evidence III.
Background: A previous study reported that hyperlipidemia increases the incidence of tears in the rotator cuff tendon and affects healing after repair. The aim of our study was to compare the gene and protein expression of torn rotator cuff tendons in patients both with and without hypercholesterolemia. Methods: Thirty patients who provided rotator cuff tendon samples were classified into either a non-hypercholesterolemia group (n=19, serum total cholesterol [TC] <200 mg/dL) and hypercholesterolemia group (n=11, serum TC ≥240 mg/dL) based on their concentrations of serum TC. The expression of various genes of interest, including COL1A1, IGF1, IL-6, MMP2, MMP3, MMP9, MMP13, TNMD, and TP53, was analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, western blot analysis was performed on the proteins encoded by interleukin (IL)-6 and TP53 that showed significantly different expression levels in real-time qRT-PCR. Results: Except for IGF1, the gene expression levels of IL-6, MMP2, MMP9, and TP53 were significantly higher in the hypercholesterolemic group than in the non-hypercholesterolemia group. Western blot analysis confirmed significantly higher protein levels of IL-6 and TP53 in the hypercholesterolemic group (p<0.05).Conclusions: We observed an increase in inflammatory cytokine and matrix metalloproteinase (MMP) levels in hypercholesterolemic patients with rotator cuff tears. Increased levels of IL-6 and TP53 were observed at both the mRNA and protein levels. We suggest that the overexpression of IL-6 and TP53 may be a specific feature in rotator cuff disease patients with hypercholesterolemia.
This study evaluated the biomechanical and histologic characteristics of the rotator cuff tendon and muscle tissue with rat models with diabetes mellitus (DM) (group 1) and 30 male rats without DM (group 2). We conducted a time zero study without any additional procedures or external variables at 9 weeks after induction of the diabetic rat model. Thereafter, quantitative evaluation of advanced glycation end products (AGEs) was accomplished via enzyme-linked immunosorbent assay and immunohistochemistry (IHC). Fatty infiltration was investigated with Oil Red O staining, and the peroxisome proliferator activated receptor-gamma (PPAR-gamma) value was studied with IHC. Grossly, the supraspinatus tendons of the group 1 rats were more friable and discolored (yellowish) than those of group 2. In the biomechanical analysis, group 1 rats showed significantly inferior ultimate failure load ( P =.001) and ultimate stress ( P =.02). Group 1 was significantly inferior to group 2 in terms of total histologic scoring ( P <.001). Mean AGE levels were significantly higher in group 1 ( P <.001), as determined by IHC. In evaluating fatty infiltration, the degree of Oil Red O staining was significantly higher in group 1 ( P <.001), but there was no significant difference in PPAR-gamma value between the 2 groups ( P =.14). The intact rotator cuffs of rats with DM were associated with inferior biomechanics in association with AGE accumulation and increased fatty infiltration, as confirmed by histologic examination The hyperglycemic state caused by DM is associated with rotator cuff tendon degeneration. [ Orthopedics . 2022;45(3):e154–e161.]
Background Natural polymer scaffolds used to promote rotator cuff healing have limitations in terms of their mechanical and biochemical properties. This animal study aimed to investigate the effects of combined graphene oxide (GO) and alginate scaffold and the toxicity of GO on rotator cuff healing in a rat model. Methods First, the mechanical properties of a GO/alginate scaffold and a pure alginate scaffold were compared. The in vitro cytotoxicity of and proliferation of human tenocytes with the GO/alginate scaffold were evaluated by CCK-8 assay. For the in vivo experiment, 20 male rats were randomly divided into two groups ( n = 10 each), and supraspinatus repair was performed: group 1 underwent supraspinatus repair alone, and group 2 underwent supraspinatus repair with the GO/alginate scaffold. Biomechanical and histological analyses were performed to evaluate the quality of tendon-to-bone healing 8 weeks after rotator cuff repair. Results The GO/alginate scaffold exhibited an increased maximum load ( p = .001) and tensile strength ( p = .001). In the cytotoxicity test, the cell survival rate with the GO/alginate scaffold was 102.08%. The proliferation rate of human tenocytes was no significant difference between the GO/alginate and alginate groups for 1, 3, 5, and 7 days. Biomechanically, group 2 exhibited a significantly greater ultimate failure load ( p < .001), ultimate stress ( p < .001), and stiffness ( p < .001) than group 1. The histological analysis revealed that the tendon-to-bone interface in group 2 showed more collagen fibers bridging, tendon-to-bone integration, longitudinally oriented collagen fibers, and fibrocartilage formation than in group 1. Conclusion A small amount of GO added to alginate improved the mechanical properties of the scaffold without evidence of cytotoxicity. At 8 weeks after rotator cuff repair, the GO/alginate scaffold improved tendon-to-bone healing without causing any signs of toxicity in a rat model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.