Aging induces gradual yet massive cell death in higher organisms, including annual plants. Even so, the underlying regulatory mechanisms are barely known, despite the long-standing interest in this topic. Here, we demonstrate that ORE1, which is a NAC (NAM, ATAF, and CUC) transcription factor, positively regulates aging-induced cell death in Arabidopsis leaves. ORE1 expression is up-regulated concurrently with leaf aging by EIN2 but is negatively regulated by miR164. miR164 expression gradually decreases with aging through negative regulation by EIN2, which leads to the elaborate up-regulation of ORE1 expression. However, EIN2 still contributes to aging-induced cell death in the absence of ORE1. The trifurcate feed-forward pathway involving ORE1, miR164, and EIN2 provides a highly robust regulation to ensure that aging induces cell death in Arabidopsis leaves.
Plant leaves, harvesting light energy and fixing CO 2 , are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total-and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity.Most organisms undergo age-dependent developmental changes during their lifespans. The timely decision of developmental changes during the lifespan is a critical evolutionary characteristic that maximizes fitness in a given ecological setting (Leopold, 1961;Fenner, 1998;Samach and Coupland, 2000). Plants use unique developmental strategies throughout their lifespans as opposed to animals. In plants, most organs are formed postnatally from sets of stem cells in the seed. In addition, plants are sessile and cope with encountering environments physiologically, rather than behaviorally. Thus, they have developed highly plastic and interactive developmental programs to incorporate environmental changes into their developmental decisions (Pigliucci, 1998;Sultan, 2000).The leaf is an organ that characterizes the fundamental aspects of plants. Leaves harvest light energy, fix CO 2 to produce carbohydrates, and, as primary producers in our ecosystem, serve as a major food source on the earth. Leaves undergo a series of developmental and physiological shifts during their lifespans. A leaf is initially formed as a leaf primordium derived from the stem cells at the shoot apical meristem and develops into a photosynthetic organ through biogenesis processes involving cell division, differentiation, and expansion (Tsukaya, 2013). In the later stages of their lifespans, leaves undergo organ-level senescence and eventually death. Organlevel senescence in plants involves postmitotic senescence and is a term used similarly as "aging" in animals. During the senescence stage, leaf cells undergo dramatic shifts in physiology from biogenesis to the sequential 1 This research was supported by the Institute for Basic Science (IBS-R013-D1 and IBS-R013-G1), the DGIST R&D Program (2014010043, 2015010004, 2015010011, 20150100012, and 15-01-HRLA-01), Basic Science Research Program (2010-0...
Sensory adaptation is an essential part of biological neural systems for sustaining human life. Using the light-induced halide phase segregation of CsPb(Br1–x I x )3 perovskite, we introduce neuromorphic phototransistors that emulate human sensory adaptation. The phototransistor based on a hybrid structure of perovskite and transition-metal dichalcogenide (TMD) emulates the sensory adaptation in response to a continuous light stimulus, similar to the neural system. The underlying mechanism for the sensory adaptation is the halide segregation of the mixed halide perovskites. The phase separation under visible-light illumination leads to the segregation of I and Br into separate iodide- and bromide-rich domains, significantly changing the photocurrent in the phototransistors. The devices are reversible upon the removal of the light stimulation, resulting in near-complete recovery of the photosensitivity before the phase segregation (sensitivity recovery of 96.65% for 5 min rest time). The proposed phototransistor based on the perovskite–TMD hybrid structure can be applied to other neuromorphic devices such as neuromorphic photonic devices, intelligent sensors, and selective light-detecting image sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.