We present that the tailored nanopatterning with tunable shape, depth, and dimension for diverse application-specific designs can be realized by utilizing controlled dynamic nanoinscribing (DNI), which can generate bur-free plastic deformation on various flexible substrates via continuous mechanical inscription of a small sliced edge of a nanopatterned mold in a compact and vacuum-free system. Systematic controlling of prime DNI processing parameters including inscribing force, temperature, and substrate feed rate can determine the nanopattern depths and their specific profiles from rounded to angular shapes as a summation of the force-driven plastic deformation and heat-driven thermal deformation. More complex nanopatterns with gradient depths and/or multidimensional profiles can also be readily created by modulating the horizontal mold edge alignment and/or combining sequential DNI strokes, which otherwise demand laborious and costly procedures. Many practical user-specific applications may benefit from this study by tailor-making the desired nanopattern structures within desired areas, including precision machine and optics components, transparent electronics and photonics, flexible sensors, and reattachable and wearable devices. We demonstrate one vivid example in which the light diffusion direction of a light-emitting diode can be tuned by application of specifically designed DNI nanopatterns.
Gallium arsenide (GaAs) photovoltaic (PV) cells have been widely investigated due to their merits such as thin‐film feasibility, flexibility, and high efficiency. To further increase their performance, a wider bandgap PV structure such as indium gallium phosphide (InGaP) has been integrated in two‐terminal (2T) tandem configuration. However, it increases the overall fabrication cost, complicated tunnel‐junction diode connecting subcells are inevitable, and materials are limited by lattice matching. Here, high‐efficiency and stable wide‐bandgap perovskite PVs having comparable bandgap to InGaP (1.8–1.9 eV) are developed, which can be stable low‐cost add‐on layers to further enhance the performance of GaAs PVs as tandem configurations by showing an efficiency improvement from 21.68% to 24.27% (2T configuration) and 25.19% (4T configuration). This approach is also feasible for thin‐film GaAs PV, essential to reduce its fabrication cost for commercialization, with performance increasing from 21.85% to 24.32% and superior flexibility (1000 times bending) in a tandem configuration. Additionally, potential routes to over 30% stable perovskite/GaAs tandems, comparable to InGaP/GaAs with lower cost, are considered. This work can be an initial step to reach the objective of improving the usability of GaAs PV technology with enhanced performance for applications for which lightness and flexibility are crucial, without a significant additional cost increase.
A cost-effective solution-based synthesis route to grow MoSe 2 thin films with vertically aligned atomic layers, thereby maximally exposing the edge sites on the film surface as well as enhancing charge transport to the electrode, is demonstrated for hydrogen evolution reaction. The surface morphologies of thin films are investigated by scanning electron microscopy and atomic force microscopy, and transmission electron microscopy analyses confirm the formation of the vertically aligned layered structure of MoSe 2 in those films, with supporting evidences obtained by Raman. Additionally, their optical and compositional properties are investigated by photoluminescence and X-ray photoelectron spectroscopy, and their electrical properties are evaluated using bottom-gate field-effect transistors. The resultant pristine MoSe 2 thin film exhibited low overpotential of 88 mV (at 10 mA·cm –2 ) and a noticeably high exchange current density of 0.845 mA·cm –2 with excellent stability, which is superior to most of other reported MoS 2 or MoSe 2 -based catalysts, even without any other strategies such as doping, phase transformation, and integration with other materials.
In article number 1903085, Jaejin Lee, Hui Joon Park, and co‐workers demonstrate perovskite/GaAs 2‐ and 4‐terminal tandem cells. High performance, stable, wide‐bandgap perovskite photovoltaics (PVs) (1.8–1.9 eV) are developed through a solvent‐controlled process. The tandem architecture is also feasible for a thin‐film flexible PV, which is essential to reduce its cost for commercialization with superior bendability. This approach is expected to improve the usability of GaAs PVs with enhanced efficiency and lower cost for applications where light‐weight and flexibility are critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.