Synergistic effect of cellulase and hemicellulase (xylanase) was evaluated because lignocellulosic material is a heterogeneous complex of cellulose and hemicellulose. Various effects of HTec2 addition on enzymatic saccharification and fermentation were evaluated using two different substrates such as corn stover and rice straw. Corn stover and rice straw were pretreated by the LMAA (low-moisture anhydrous ammonia) method at the preselected same conditions (90 °C, 120 h, moisture content = 50%, NH3 loading = 0.1 g NH3/g). It was observed that the enzymatic saccharification yield of pretreated corn stover (76.4% for glucan digestibility) was higher than that of pretreated rice straw (70.9% for glucan) using CTec2 cellulase without HTec2 addition. Glucan digestibility of pretreated corn stover was significantly increased from 76.4% to 91.1% when the HTec2/CTec2 (v/v) increased from 0 to 10. However, it was interesting that the ethanol production was decreased from 89.9% to 76.3% for SSF and 118.0% to 87.9% for SSCF at higher HTec2/CTec2. As the glucan loading increased from 2.0% to 7.0%, the ethanol yields of both SSF and SSCF were decreased from 96.3% to 88.9% and from 116.6% to 92.4%, respectively. In addition, the smallest inoculum size (optical density of 0.25) resulted in the highest ethanol production (20.5 g/L).
A two-step process using colloid milling (CM) and hot water (HW) treatment was evaluated for its ability to improve xylose recovery and the enzymatic digestibility of oak wood. In the first step, CM pretreatment was applied at a milling (feeding) speed of 100 mL/min with four different milling times (3, 6, 9, and 12 h), and the enzymatic digestibility and physical properties of each substrate were measured. In the second-step, the HW pretreatment was applied to enhance the enzymatic digestibility and xylan recovery at various reaction severities (Log R0) from 2.07 to 4.43 using 12 h colloid-milled (CM-treated) oak wood. Compared with untreated oak wood, CM not only significantly disrupted the structure of oak wood but also increased its Brunauer–Emmett–Teller surface area (42-fold) and pore volume (28-fold). The crystallinity of two-step-treated oak wood was decreased to 34.8, while the enzymatic digestibility of 12 h CM-treated oak wood was increased to 58.1% at enzyme loading of 30 filter paper units (FPU)/g glucan for 96 h. After HW treatment of CM-treated oak wood at Log R0 = 3.83, 80.7% of xylan recovery yield and 91.1% of enzymatic digestibility (with 15 FPU/g glucan at 96 h) was obtained, which was 84.2% higher than the enzymatic digestibility of untreated oak wood (6.9%).
The adverse effects of UV (ultraviolet) radiation on polymeric materials and organic constituents can damage the molecular structure of human skin and polymeric materials, resulting in their degradation. Therefore, additives or reagents for UV-shielding must be used in related applications, including polymer compounds and skin cosmetics. Bio-based polymers have shown great potential as alternatives to conventional metallic and organic materials (e.g., TiO2 and ZnO) in various applications; therefore, natural products have gained attention as a potential resource to overcome UV-induced health and environmental problems. In particular, biomass-derived materials such as lignin, fiber, and silica have been investigated as UV-shielding materials owing to their biocompatibility, biodegradability, and low carbon emissions. In this review, the UV-shielding effect and potential of various biomass-derived materials, such as silica, nanocellulose, and fibers, are reviewed. Among them, lignin is considered a promising UV-shielding material because of the presence of chromophores and functional groups capable of absorbing UV radiation of all ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.