The stage of gastrointestinal cancers has been correlated with the loss of heterozygosity (LOH) and the presence of microsatellite instability (MSI). This study delineated the category of the extent of LOH and the presence of MSI for the genetic classification of the intestinal-type and diffuse-type gastric cancers that frequently exhibited intralesional heterogeneity. A total of 390 tumor foci from 116 gastric cancers were screened using a panel of 40 microsatellite markers on chromosomes 3p, 4p, 5q, 8p, 9p, 13q, 17p, and 18q. One MSI-positive gastric cancer accompanying a LOH-positive focus and 19 gastric cancers with an intralesional LOH heterogeneity with a similar extent were identified. One hundred and sixteen gastric cancers were categorized based on the presence of MSI (16 cases) and the extent of LOH (100 cases) in a representative focus. A large fraction of MSI-positive cases was found in the intestinal-type (94%), late-onset (mean age 68 years), early-stage (75%) diseases (P<0.05). The diffuse-type gastric cancers with a baseline-level loss involving zero or one chromosome showed a correlation with the earlier onset (mean age 45 years), advanced-stage (81%) diseases (P<0.0001). In both the intestinal-type and diffuse-type gastric cancers, a low-level loss involving 0-3 chromosomes (2-3 chromosomes in the diffuse type) and a high-level loss involving 4-7 chromosomes were predominant in the early (69%) and advanced (86%) stages, respectively (P<0.0001), at similar mean ages of onset (61 years and 65 years). Gastric cancers were categorized into low-risk (MSI and low-level LOH) and high-risk (baseline-level and high-level LOH) genotypes displaying cell-type- and age-dependent oncogenicity.
Alu and L1 retroelements have been suggested to initiate the spread of CpG methylation. In this study, the spread of CpG methylation was estimated based on the distance between the CpG islands and the nearest retroelements. All human genes (23,116) were examined and the correlations between the length of the CpG islands and the distance and density of the confronting retroelements were examined using nonoverlapping 5-kb windows. There was a linear relationship between the length of the CpG islands and the density of the Alu elements and an inverse relationship between the CpG islands and the L1 elements located more distantly, suggesting a suppressive effect of the Alu's on the spread of L1 methylation. Methylation analysis of the transitional CpG sites between the CpG islands and the nearest retroelements upstream of 16 genes was then carried out using DNA preparations from 11 different human tissues. Methylation-variable transitional CpGs were observed for the selected genes and the different tissues.
In general, methylation of the promoter regions is inversely correlated with gene expression. The transitional CpG area between the promoter-associated CpG islands and the nearby retroelements is often methylated in a tissue-specific manner. This study analyzed the relationship between gene expression and the methylation of the transitional CpGs in two human stromal cells derived from the bone marrow (BMSC) and adipose tissue (ATSC), both of which have a multilineage differentiation potential. The transitional CpGs of the osteoblast-specific (RUNX2 and BGLAP), adipocyte-specific (PPARgamma2), housekeeping (CDKN2A and MLH1), and mesenchyme-unrelated (RUNX3) genes were examined by methylation-specific PCR. The expression of each gene was measured using reverse-transcription PCR analysis. The RUNX2, BGLAP, and CDKN2A genes in the BMSC, and the PPARgamma2 gene in the ATSC exhibited hypomethylation of the transitional CpGs along with the strong expression. The CpG island of RUNX3 gene not expressed in both BMSC and ATSC was hypermethylated. Transitional hypomethylation of the MLH1 gene was accompanied by the higher expression in the BMSC than in the ATSC. The weakly methylated CpGs of the PPARgamma2 gene in the BMSC became hypomethylated along with the strong expression during the osteoblastic differentiation. There were no notable changes in the transitional methylation and expression of the genes other than PPARgamma2 after the differentiation. Therefore, the transitional methylation and gene expression established in mesenchymal cells tend to be consistently preserved under the induction of differentiation. Weak transitional methylation of the PPARgamma2 gene in the BMSC suggests a methylation-dependent mechanism underlying the adiopogenesis of bone marrow.
CpG-island margins and non-island-CpG sites round the transcription start sites of CpG-island-positive and -negative genes are methylated to various degrees in a tissue-specific manner. These methylation-variable CpG sites were analyzed to delineate a relationship between the methylation and transcription of the tissue-specific genes. The level of tissue-specific transcription was estimated by counting the number of the total transcripts in the SAGE (serial analysis of gene expression) database. The methylation status of 12 CpG-island margins and 21 non-island CpG sites near the key tissue-specific genes was examined in pluripotent stromal cells obtained from fat and bone marrow samples as well as in lineage-committed cells from marrow bulk, stomach, colon, breast, and thyroid samples. Of the 33 CpG sites examined, 10 non-island-CpG sites, but none of the CpG-island margins were undermethylated concurrent with tissue-specific expression of their nearby genes. The net methylation of the 33 CpG sites and the net amount of non-island-CpG gene transcripts were high in stomach tissues and low in stromal cells. The present findings suggest that the methylation of the non-island-CpG sites is inversely associated with the expression of the nearby genes, and the concert effect of transitional-CpG methylation is linearly associated with the stomach-specific genes lacking CpG-islands.
Helicobacter pylori infection increases age-related diverse overmethylation in gene-control regions, which increases the risk of gastric cancer. The H. pylori-associated overmethylation changes subsequently disappear when gastric atrophy and cancer develop. To identify cancer-risk epigenotypes, we traced dynamic methylation changes in the background mucosa of the stomach depending on the extent of gastric atrophy. Paired biopsy specimens were obtained from the noncancerous antrum and body mucosa of 102 patients with cancer and 114 H. pylori-positive and 112 H. pylori-negative controls. The grade of gastric atrophy was evaluated using the endoscopic atrophic border score. The methylation-variable sites at the CpG-island margins and near the transcriptional start sites lacking CpG islands were semiquantitatively analyzed by radioisotope-labeling methylation-specific PCR. We selected eight housekeeping genes adjacent to Alu (CDH1, ARRDC4, PPARG, and TRAPPC2L) or LTR retroelements (MMP2, CDKN2A, RUNX2, and RUNX3) and eight stomach-specific genes (TFF2, PGC, ATP4B, TFF1, TFF3, GHRL, PGA, and ATP4A). Analysis of agerelated methylation in the H. pylori-positive controls revealed slow overmethylation in the body and in the LTR-adjacent genes. A high-frequency overmethylation defined based on the slowly overmethylated genes was frequently observed in the body of patients with gastric cancer with open-type atrophy (OR, 12.7; 95% confidence interval, 3.2-49.8). The rapidly changing methylation of Alu-adjacent genes was barely increased in the antrum of patients with gastric cancer. Among diverse methylation changes associated with H. pylori infection, an increase in slowly changing methylation could serve as a cancer-risk marker. Cancer Prev Res; 7(6); 585-95. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.