An ultrasmall single-electron transistor has been made by scaling the size of a fin field-effect transistor structure down to an ultimate limiting form, resulting in the reliable formation of a sub-5 nm Coulomb island. The charge stability data feature the first exhibition of three and a half clear Coulomb diamonds at 300 K, each showing a high peak-to-valley current ratio. Its charging energy is estimated to be more than one order magnitude larger than the thermal energy at room-temperature. The hybrid literal gate integrated by this single-electron transistor combined with a field-effect transistor displays >5 bit multiswitching behavior at 300 K with a large voltage swing of ~1 V
We report on transport measurement performed on a room-temperature-operating ultra-small Coulomb blockade devices with a silicon island of sub-5nm. The charge stability at 300K exhibits a substantial change in slopes and diagonal size of each successive Coulomb diamond, but remarkably its main feature persists even at low temperature down to 5.3K except for additional Coulomb peak splitting. This key feature of charge stability with additional fine structures of Coulomb peaks are successfully modeled by including the interplay between Coulomb interaction, valley splitting, and strong quantum confinement, which leads to several low-energy many-body excited states for each dot occupancy. These excited states become enhanced in the sub-5nm ultra-small scale and persist even at 300K in the form of cluster, leading to the substantial modulation of charge stability.
Imaging the intrinsic optical absorption properties of nanomaterials with optical microscopy (OM) is hindered by the optical diffraction limit and intrinsically poor sensitivity. Thus, expensive and destructive electron microscopy (EM) has been commonly used to examine the morphologies of nanostructures. Further, while nanoscale fluorescence OM has become crucial for investigating the morphologies and functions of intracellular specimens, this modality is not suitable for imaging optical absorption and requires the use of possibly undesirable exogenous fluorescent molecules for biological samples. Here we demonstrate super-resolution visible photoactivated atomic force microscopy (pAFM), which can sense intrinsic optical absorption with ~8 nm resolution. Thus, the resolution can be improved down to ~8 nm. This system can detect not only the first harmonic response, but also the higher harmonic response using the nonlinear effect. The thermoelastic effects induced by pulsed laser irradiation allow us to obtain visible pAFM images of single gold nanospheres, various nanowires, and biological cells, all with nanoscale resolution. Unlike expensive EM, the visible pAFM system can be simply implemented by adding an optical excitation sub-system to a commercial atomic force microscope.
Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.