In vertebrates, specification of the dorso-ventral axis requires Wnt signaling, which leads to formation of the Nieuwkoop center and the Spemann organizer (dorsal organizer), through the nuclear accumulation of beta-catenin. Zebrafish bozozok/dharma (boz) and squint (sqt), which encode a homeodomain protein and a Nodal-related protein, respectively, are required for the formation of the dorsal organizer. The zygotic expression of boz and sqt in the dorsal blastoderm and dorsal yolk syncytial layer (YSL) was dependent on the maternally derived Wnt signal, and their expression at the late blastula and early gastrula stages was dependent on the zygotic expression of their own genes. The dorsal organizer genes, goosecoid (gsc) and chordin (din), were ectopically expressed in wild-type embryos injected with boz or sqt RNA. The expression of gsc strictly depended on both boz and sqt while the expression of din strongly depended on boz but only partially depended on sqt and cyclops (cyc, another nodal-related gene). Overexpression of boz in embryos defective in Nodal signaling elicited the ectopic expression of din but not gsc and resulted in dorsalization, implying that boz could induce part of the organizer, independent of the Nodal proteins. Furthermore, boz; sqt and boz;cyc double mutants displayed a severely ventralized phenotype with anterior truncation, compared with the single mutants, and boz;sqt;cyc triple mutant embryos exhibited an even more severe phenotype, lacking the anterior neuroectoderm and notochord, suggesting that Boz/Dharma and the Nodal-related proteins cooperatively regulate the formation of the dorsal organizer.
The zebrafish homeobox gene dharma/bozozok (boz) is required for the formation and/or function of the Nieuwkoop center and the subsequent induction of the Spemann organizer. dharma is expressed soon after the midblastula transition in the dorsal blastomeres and the dorsal yolk syncytial layer (YSL). We found that the expression of dharma was upregulated or ectopically induced by misexpression of a Wnt protein and cytoplasmic components of the Wnt signaling pathway and downregulated by the expression of dominant-negative Tcf3. A 1.4-kbp fragment of the dharma promoter region contains consensus sequences for Tcf/Lef binding sites. This promoter region recapitulated the Wnt-dependent and dorsal dharma expression pattern when it was fused to luciferase or GFP. Deletion and point mutant analyses revealed that the Tcf/Lef binding sites were required to drive this expression pattern. These data established that dharma/boz functions between the dorsal determinants-mediated Wnt signals and the formation of the Nieuwkoop center.
Genomic comparison of two sibling yeast species, Saccharomyces bayanus and Saccharomyces cerevisiae, was performed by Southern blot analysis with various S. cerevisiae gene probes following electrophoretic karyotyping. Fifteen genes on chromosome IV of S. cerevisiae were examined and classified into two groups. Gene probes of CEN4 and TRP1, as well as six other genes located on the left arm of the chromosome hybridized to a 1100‐kb chromosome of S. bayanus that is smaller than chromosome IV of S. cerevisiae. On the other hand, probes of seven genes located on the right arm of chromosome IV hybridized to a 1350‐kb chromosome that is homeologous to chromosome IV, judging from its size. Two genes located on the left arm of chromosome II hybridized to the 1350‐kb chromosome, while four genes on the right arm hybridized to the 1100‐kb chromosome. These pieces of evidence indicate that chromosomes II and IV of S. cerevisiae are rearranged into 1350‐kb and 1100‐kb chromosomes in S. bayanus. Furthermore, it is suggested that chromosome XV is rearranged into two chromosomes (800 and 850 kb in size) in S. bayanus. The translocation points of chromosomes II and IV were delimited using S. cerevisiae prime clone membranes. The results indicated that the translocation points are located close to the FUR4 locus on chromosome II and close to the RAD57 locus on chromosome IV.
By a genomic comparison of two sibling yeasts, Saccharomyces bayanus and S. cerevisiae, we previously demonstrated that chromosomes II and IV of S. cerevisiae were rearranged into chromosomes 12 and 14 of S. bayanus or vice versa. In the present study we have delimited the translocation break sites in chromosomes II and IV by Southern hybridization using DNA fragments of S. cerevisiae cosmid clones as probes. The results suggest that the reciprocal translocation of chromosomes II and IV had occurred at duplicated RPL2 loci. Furthermore, the translocation sites in S. bayanus were confirmed by the cloning and sequence analysis of the regions flanking RPL2 loci. Several genes in the regions flanking the RPL2 loci were present in the order expected for a translocation at these loci between the two species. These results indicated that the reciprocal translocation between chromosomes II and IV was generated by homologous recombination at duplicated RPL2 loci on the two chromosomes. Therefore, we propose that duplicated genes or duplicated regions play an important role in altering genomic organization during the speciation of S. bayanus and S. cerevisiae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.