The Fitzpatrick skin classification has been a useful method to categorize cutaneous sensitivity to ultraviolet radiation (UVR), although it was based originally on responses in white skin. Because the relevance of this phototype in brown skin is in question, we investigated skin phototypes of university students by a self-reporting questionnaire and measured their MEDs in Korean, brown skin. After studying our explanation of the definition of Fitzpatrick skin types, 707 Korean university students answered the questionnaire. We then measured UVB MEDs in 156 randomly selected male students. The order of frequency of skin type was type III (55.0%), IV (29.0%), and V (12.3%) by the questionnaire, with the sun sensitive categories (types I and II) reported only for 3.7%. There was no significant difference in MEDs between types IV and V, and the mean MED of each skin type did not show a monotonic increase with increasing skin type. Subjects with MEDs of 70-90 mJ/cm2 (corresponding to the MED of skin type V, as proposed by Pathak & Fitzpatrick) represented about half or more of the subjects in all categories, even types II and III. Subjects with MEDs lower than 60 mJ/cm2 were more prevalent in types II and III compared with types IV and V. We suggest that there is at best a weak relationship between the skin types, by the Fitzpatrick method, and MEDs in Korean, brown skin.
Ultraviolet (UV) rays are electromagnetic waves that account for about 5% of solar light, and when overexposed, they pose malevolent effects on human skin and health. However, with recent reports on the beneficial effects of some wavelength bands of UV rays, people’s interest in UV information has increased. This has resulted in requiring not just simple information, such as the amount of UV or UV index (UVI), but detailed UV information that directly affects health, such as EUVB (erythemally weighted UVB). However, calculating EUVB, which can be done by applying the erythemal weighted function on the intensity value in wavelength, requires specialized optical measurement devices, which cannot be easily accessed by the general public; furthermore, public institutions’ UV information services do not offer EUVB information for individuals. Therefore, the present study proposes a UVI sensor-based portable measurement device, with which the general public can have easy access to UV-related information. The proposed device comprises a UVI sensor that can measure the intensity of erythemal UV radiation, a Bluetooth Low Energy (BLE) module that supports communication, and a micro controller unit (MCU) for key operations. In addition, it applies the ratio of EUVB by month/time, resulting from the actual analysis of natural light to calculate the EUVB and provides the amount of UVI and EUVB to check if they meet conditions required for outdoor activities through the device and smartphone applications. The applicability of the proposed device was verified by the measurement performance comparison test with the standard device, a spectrometer (CAS 140 CT), which showed an average error of 0.045 for UVI and 0.0014 W/m2. The proposed device’s offering of UV-related information such as UVI and EUVB to the user is expected to prevent potential damage due to exposure to UV and to support healthy outdoor activities.
Ultraviolet B (UVB) in sunlight is known to promote health when humans are exposed to optimum sunlight. Proper exposure to ultraviolet B is essential to produce vitamin D in the body, which is a particularly important factor for health. However, there has been an increase recently in the number of people who are lacking sunlight exposure due to staying indoors. Avoiding ultraviolet (UV) rays leads to health deterioration. To solve this problem, a portable ultraviolet measuring device that provides users with the UV intensity information of outdoor sunlight has been developed while UVB Light Emitting Diode (LED) lighting technologies capable of providing UVB radiation have been studied. However, existing technologies are mere methods for providing information on ultraviolet rays and artificially exposing to ultraviolet rays, and there is a risk for the UV radiation amount to not meet the daily required UV dose. Therefore, in this paper, a UVB LED general lighting system based on a UV exposure calculation algorithm that supports users’ daily required UV dose is proposed. The proposed system is composed of an IoT (Internet of Things) UV measuring device that measures the UV dose indoors, as well as outdoors, UVB LED general lighting which can safely provide UVB doses at indoors, and a smartphone which provides information on the cumulative UV dose and the estimated amount of vitamin D while it controls UVB LED general lighting. In addition, it is possible to support users’ vitamin D synthesis by providing as much UV light as its shortage through UVB LED general lighting, based on an individual’s UV exposure amount through outdoor sunlight, using a smartphone implementing a UV dose calculation algorithm. In order to confirm the performance of the proposed system, a simulation was conducted assuming that users with skin types 2 and 3 performed outdoor activities within 30 min and entered the room. The result confirmed that the proposed lighting can provide users of all ages with the UV dose required per day.
Circadian rhythm is linked to sleep, arousal and human health overall, affecting body temperature and heart rate. A 24-h natural-light cycle provides optimum lighting environment for humans. However, as people increasingly stay indoors with artificial lighting, lacking periodic characteristics, imbalance in the circadian rhythm ensues. Previous lighting-related studies to resolve such problem partially provided the colour temperatures of natural light but failed to reproduce the 24-h periodic characteristics of it. This study proposes a natural light-reproducing system that provides the daylight cycle characteristics of natural light in order to maintain the circadian rhythm. Natural light was measured through an optical measurement equipment, while the characteristics (colour temperature and short-wavelength ratio) of natural light by season and time were analysed. Subsequently, the control indicator of seasonal and hourly lighting was extracted and applied to the light-emitting diode lighting to provide lighting service, executing a daylight cycle that reflects the characteristics of natural light. After the sunset, especially, the circadian rhythm was maintained by minimizing the short-wavelength ratio of the lighting while maintaining indoor illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.