An overview of NASA's High Speed Aeroservoelasticity (ASE) project is provided with a focus on recent computational aeroelastic analyses of a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The overview includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, structured/unstructured CFD grids, and CFD-based aeroelastic analyses. In addition, a summary of the work involving the development of aeroelastic Reduced-Order Models (ROMs) and the application of the CFL3D-ASE code that enables the inclusion of a control system within the CFL3Dv6 CFD code is presented.
A summary of NASA's High Speed Aeroservoelasticity (ASE) project is provided with a focus on a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The summary includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, structured and unstructured CFD grids, and discussion of the FEM development including sizing and structural constraints applied to the N+2 configuration. Linear results obtained to date include linear mode shapes and linear flutter boundaries. In addition to the tasks associated with the N+2 configuration, a summary of the work involving the development of AeroPropulsoServoElasticity (APSE) models is also discussed.
This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed.
Investigations of the external aerodynamics of the unpowered X-57 Mod-III configuration using computational fluid dynamics are presented. Two different Reynolds-averaged Navier-Stokes flow solvers were used in the analysis: the STAR-CCM+ unstructured solver using polyhedral grid topology, and the Launch Ascent Vehicle Aerodynamics (LAVA) structured curvilinear flow solver using structured overset grid topology. A grid refinement study was conducted and suitable grid resolution was determined by examining the forces and moments of the aircraft. Code-to-code comparison shows that STAR-CCM+ and LAVA are in good agreement both in quantitative values and trends. The angle-of-attack sweep and sideslip-angle sweep were performed. Results indicate that lift coefficients have a sharp drop at stall. At high angle of attack, STAR-CCM+ and LAVA show different flow separation behavior possibly due to differences in the turbulence model. The sideslip-angle sweep results show constant pitching moment from 0° to 15°, then a sharp increase between 15° and 20° sideslip angle.
The X-57 Maxwell is NASA's latest electric airplane concept that has been simulated for aerodynamic performance using the structured overset and unstructured grid solvers within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework as well as the unstructured polyhedral grid solver in Star-CCM+ for code-to-code comparison. In order to validate the predictions, comparisons were made between the CFD solutions and experimental data collected in the 12-foot Low-Speed Wind Tunnel at NASA Langley Research Center. The simulations are in preparation for the development of a comprehensive aerodynamic database which will assess aircraft performance at a variety of conditions. The findings from these simulations will establish the best practices for mesh resolution, numerical discretization, and turbulence modeling to be used for this database. Preliminary database results have shown that best-practices learned from the initial validation simulations will potentially reduce error in X-57 aerodynamic loads and moments relative to experiment by up to 14%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.